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Samenvatting
– Summary in Dutch –

Artificiële intelligentie (AI) wordt een steeds essentiëler onderdeel van
ons dagelijkse leven, met invloed op een breed spectrum van gebieden,
van geavanceerde medische diagnostiek tot gepersonaliseerde webwinkel
suggesties. De mogelijkheid van AI om te leren van een enorme hoeveelheid
data zoals afbeeldingen, spraak en tekst stelt het in staat om de mens
in verschillende domeinen te overtreffen. Voorbeelden hiervan zijn het
spelen van complexe spellen, het optimaliseren van logistiek en het bieden
van directe vertalingen. Natuurlijke taalverwerking of natural language
processing (NLP) is een interdisciplinair onderdeel van AI en taalkunde dat
machines in staat stelt menselijke taal te interpreteren, te begrijpen en te
genereren. Naast de bekende technologieën zoals vertaling (bijvoorbeeld
Google Translate) en spraakherkenning (bijvoorbeeld Siri), strekken de
toepassingen van NLP zich uit tot het ondersteunen van gepersonaliseerd
onderwijs door middel van geautomatiseerde chatbots, het ondersteunen
van automatische lening- of kredietaanvragen in de financiële sector en het
helpen bij geestelijke gezondheidsbeoordelingen, onder andere.

Een belangrijke drijfveer achter de recente vooruitgang in NLP is de ont-
wikkeling van vooraf getrainde taalmodellen of pretrained language models
(PLM’s). Deze modellen vertegenwoordigen een fundamentele verschui-
ving in het begrip en de generatie van menselijke taal door machines. In
tegenstelling tot eerdere modellen die uitgebreide handmatige feature engi-
neering vereisten, gebruiken PLM’s enorme hoeveelheden tekstuele data
om taalpatronen en nuances te leren. Deze methodologie stelt hen in staat
om taalcontext, grammatica en semantiek diepgaand te begrijpen, wat de
basis vormt voor talrijke NLP-toepassingen. PLM’s staan centraal in het cre-
ëren van geavanceerde NLP-systemen zoals ChatGPT, die bekend staan om
hun conversatievaardigheden en contextueel begrip. Deze PLM’s hebben
de state-of-the-art in verschillende NLP-taken voortgestuwd, waaronder
machinale vertaling, interpretatie van natuurlijke taal, sentimentanalyse en
het genereren en beantwoorden van vragen. Hun veelzijdigheid en effici-
ëntie maakten innovatieve toepassingen mogelijk in verschillende velden,
waaronder het onderwijs, waar ze ondersteuning bieden voor intelligente
tutorsystemen, het automatisch samenvatten van tekstinhoud, en realtime
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taalondersteuning voor niet-moedertaalsprekers.
Het algemene thema van mijn proefschrift is het aanpassen van taalmodel-

len, voornamelijk voor toepassingen in AI in het onderwijs, om automatisch
educatief materiaal te creëren. Dit proefschrift richt zich op de uitdagingen
bij het formuleren van test- en oefenvragen in educatieve settings, een taak
die traditioneel aanzienlijke training, ervaring, tijd en middelen vereist.
Deze taak is vooral cruciaal in high-stakes omgevingen zoals certificeringen
en toetsen, waar vragen niet hergebruikt kunnen worden. Mijn primaire
onderzoek is met name gericht op twee educatieve taken: generatie van aflei-
ders en generatie van invul opgaven. Generatie van afleiders verwijst naar het
genereren van plausibele maar onjuiste antwoorden in meerkeuzevragen,
terwijl generatie van invul opgaven verwijst naar het induceren van goed
gekozen gaten in bestaande teksten, zodat deze dienst kunnen doen als
grammatica oefening. Deze taken, hoewel reeds uitgebreid onderzocht,
bieden onontgonnen mogelijkheden die aangepakt kunnen worden via de
recente vooruitgang in taalmodellen. Als secundair doel onderzoek ik hoe
coreference resolution kan aangepast worden aan nieuwe talen. Corefe-
rence resolution heeft als doel het groeperen van vermeldingen in de tekst
aan de hand van de entiteiten waarnaar ze verwijzen in de echte wereld.
Deze sleuteltaak in NLP is essentieel voor het begrijpen en genereren van
samenhangende taal.

Na het vergelijken van klassieke machine learning modellen en taalmodel-
gebaseerde zoekmodellen voor de taak van afleidergeneratie (Hoofdstuk 2),
richt ik me op het verbeteren van deze oplossing via uitbreiding naar grote
taalmodellen zoals ChatGPT (Hoofdstuk 3). Vervolgens concentreer ik me
op het aanpassen van een taalmodel voor het genereren van invul opgaven
(Hoofdstuk 4). Ten slotte richt ik me op het aanpassen van coreference
resolution (Hoofdstuk 5) aan nieuwe talen, ditmaal niet met toepassing
in het onderwijs. In de volgende alinea’s volgt een kort overzicht van elk
hoofdstuk, telkens met nadruk op de belangrijkste bijdragen.

In Hoofdstuk 1 bied ik een kort overzicht van de eerdere literatuur over
pretrained language models en toepassingen van AI in het onderwijs om de
lezer in staat te stellen de in de volgende hoofdstukken beschreven termen
te begrijpen.

De concrete onderzoekscontributies van deze thesis beginnen in Hoofd-
stuk 2 met het voorstellen van een neurale netwerkarchitectuur die een
meertalig pretrained language model aanpast voor de taak van afleider
rangschikking. We gebruiken dit model om slim afleiders te hergebruiken
uit een bestaande set van handmatig gecreëerde antwoorden en afleiders,
met als doel leraren te helpen efficiënt nieuwe meerkeuzevragen te creëren.
Deze vragen hebben betrekking op een verscheidenheid aan domeinen,
onderwerpen en talen. We tonen aan dat dit model in staat is om afleiders
van betere kwaliteit te genereren in vergelijking met verschillende baselines,
zowel wat betreft geautomatiseerde metrieken als een gebruikersstudie met
leraren die wij op poten zetten.
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In Hoofdstuk 3 benutten we grote taalmodellen of large language models
(LLM) zoals ChatGPT om vrij afleiders te genereren, in plaats van bestaande
afleiders te rangschikken. Hier introduceren we een nieuwe strategie om
LLM’s te begeleiden bij het genereren van plausibele afleiders. Dit omvat het
aansturen van de LLM met vraagitems die automatisch zijn opgehaald uit
vraag databanken, met behulp van lokale modellen gebouwd in Hoofdstuk
2. We laten zien dat de combinatie van lokale modellen met LLM’s afleiders
van hogere kwaliteit produceert.

In Hoofdstuk 4 verschuiven we onze focus naar een meer gespeciali-
seerde educatieve taak: het genereren van grammatica oefeningen met invul
opgaven. We schetsen de creatie van een real-world dataset van Franse
grammatica oefeningen met invul opgaven, die verschillende grammaticale
aspecten omvatten. We kaderen deze taak als een voorbeeld van example-
aware prediction, waarbij geschikte gaten in teksten worden geïdentificeerd
op basis van gedeeltelijk geannoteerde gegevens. We stellen een nieuw
neuraal netwerk voor, waarbij een pretrained language model aangepast
wordt voor de voorspellingstaak. We demonstreren hoe de effectiviteit
aanzienlijk verhoogt wanneer we de output van het model conditioneren op
een voorbeeldoefening, in tegenstelling tot een baseline model dat onafhan-
kelijk van deze voorbeelden werkt. Daarnaast analyseren we het inherente
vermogen van het model om onderscheid te maken tussen elementaire
types oefeningen zonder dat het expliciet getraind is om dit te doen. We
benadrukken hierbij de herkenningscapaciteiten voor veelvoorkomende
types in de testset.

In tegenstelling tot eerdere hoofdstukken die zich richtten op de edu-
catieve taken van afleidergeneratie en grammaticaoefeningen met invul
opgaven, wijken we in Hoofdstuk 5 af naar het aanpassen van de funda-
mentele NLP-taak coreference resolution aan nieuwe talen. We presenteren
het aantrekkelijke idee om vertaaltools te gebruiken voor het bootstrappen
van coreference resolution in talen met beperkte middelen of low-resource
talen. Specifiek presenteren en analyseren we twee strategieën: (i) vertaal de
train data in een high-resource taal naar de doeltaal en train een coreference-
model en (ii) vertaal de test data naar een high-resource taal (bijvoorbeeld
Engels) en gebruik een getraind coreference-model voor inferentie. We voe-
ren ook een rigoureuze analyse uit naar de bron van fouten voor deze twee
strategieën, waarbij de kwaliteit van machinale vertaalmodellen optreedt
als de primaire beperkende factor.

Ten slotte bieden we in Hoofdstuk 6 een beknopte maar volledige samen-
vatting van de belangrijke onderzoeksbijdragen die in deze thesis gemaakt
werden. Deze samenvatting belicht de belangrijkste inzichten die uit het
onderzoek naar voren zijn gekomen, zodat de lezer een duidelijk begrip
krijgt van de belangrijkste bevindingen van de thesis. Daarnaast verstrek-
ken we aanbevelingen voor toekomstige onderzoeksrichtingen op basis
van de conclusies van deze studie, waarbij we het belang van voortgezette
exploratie en ontdekking in het veld benadrukken.





Summary

Artificial Intelligence (AI) has increasingly become a vital part of our every-
day lives, impacting a broad spectrum of areas, from advanced medical
diagnostics to personalized shopping suggestions. AI’s ability to learn from
a vast amount of data like images, speech and text allows it to outperform
humans in various domains. Examples include playing complex games,
optimizing logistics, and providing instant language translations. Natural
language processing (NLP) is an interdisciplinary subfield of AI and lin-
guistics that allows machines to interpret, understand, and generate human
language. Beyond the familiar technologies such as text translation (e.g.,
Google translate) and voice recognition (e.g., Siri), NLP’s applications ex-
tend to supporting personalized learning in education through automated
chatbots, supporting automatic loan/credit applications in finance and
aiding in mental health assessments, among others.

A key driver behind the recent progress in NLP is the development of
pretrained language models (PLMs). These models represent a fundamental
shift in machine understanding and generation of human language. Unlike
earlier models that required extensive manual feature engineering, pre-
trained models use vast text data to learn language patterns and nuances.
This methodology enables them to grasp language context, grammar, and
semantics deeply, forming the basis for numerous NLP applications. PLMs
are central to creating cutting-edge NLP systems such as ChatGPT, which
are known for their conversational abilities and contextual understanding.
These PLMs have pushed the state-of-the-art in several NLP tasks like
machine translation, natural language inference, sentiment analysis, and
question generation and answering etc. Their versatility and efficiency have
enabled innovative applications across various fields, including education,
where they support intelligent tutoring systems, content summarization
automation, and instant language assistance for non-native speakers.

The overall theme of my dissertation is in adapting language models mainly
for applications in AI in education to automatically create educational con-
tent. It addresses the challenges in formulating test and exercise questions
in educational settings, which traditionally require significant training, ex-
perience, time, and resources. This is particularly critical in high-stakes
environments like certifications and tests, where questions cannot be reused.
In particular, the primary research is focused on two educational tasks:
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distractor generation and gap-filling exercise generation. Distractor generation
task refers to generating plausible but incorrect answers in multiple-choice
questions, while gap-filling exercise generation refers to inducing well-
chosen gaps to generate grammar exercises from existing texts. These tasks,
although extensively researched, present unexplored avenues that recent
advancements in language models can address. As a secondary objective, I
explore the adaptation of coreference resolution to new languages. Corefer-
ence resolution is a key NLP task that involves clustering mentions in a text
that refer to the same real-world entities, a process vital for understanding
and generating coherent language.

After comparing classical machine learning approaches and language
model-based retrieval models (Chapter 2) for the distractor generation task,
I focused on improving the solution by extending it to large language mod-
els such as ChatGPT (Chapter 3). Then I focused on adapting a language
model to the gap-fill exercise generation (Chapter 4). Finally, moving away
from the application in education, I focused on adapting coreference resolu-
tion to new languages. In the paragraphs that follow, I offer a brief overview
of each chapter, highlighting their key contributions.

In Chapter 1, I provide a brief overview of the previous literature on
pre-trained language models and applications of AI in education to allow
the reader to understand the terms described in subsequent chapters.

The achieved research contributions of this thesis start in Chapter 2
with proposing a neural network architecture that adapts a multilingual pre-
trained language model for the task of distractor ranking. We use this model
to smartly reuse distractors from a large existing set of manually created
answers and distractors for questions over a variety of domains, subjects,
and languages to help teachers create new MCQs. We show that this model
is able to generate better quality distractors compared to baselines using
automated metrics and a user study with teachers we conducted.

In Chapter 3, we leverage instruction-tuned large language models
(LLMs) such as ChatGPT to freely generate distractors as compared to
ranking existing distractors. Here, we introduce a novel strategy for guiding
LLMs in generating plausible distractors. This involves prompting the
LLMs with question items automatically retrieved from question banks,
using local models we built in Chapter 2. We show that combining local
models with LLMs produces higher quality distractors.

In Chapter 4, we shift our focus to the more specialized educational task
of generating gap-fill grammar exercises. We outline the creation of a real-
world dataset of French gap-filling exercises, covering various grammatical
aspects. We frame the task as an example-aware prediction challenge, where
suitable gaps in texts are identified based on partially annotated data. We
propose and train a novel neural network by adapting a pretrained lan-
guage model for the prediction task. We demonstrate that conditioning
the model’s output on an example exercise significantly increases its ef-
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fectiveness compared to a baseline model that operates independently of
examples. Additionally, we analyze the model’s inherent ability to differ-
entiate between elementary exercise types without being explicitly trained
to do so, highlighting its recognition capabilities for commonly occurring
types in the test set.

Unlike previous chapters that focused on the educational tasks of dis-
tractor generation and gap-fill grammar exercise generation, in Chapter 5
we switch the topic to adapting the fundamental NLP task of coreference
resolution to new languages. We present the appealing idea of leverag-
ing translation tools for bootstrapping coreference resolution in languages
with limited resources. Specifically, we propose and analyze two strate-
gies (i) translate the training data in high-resource language to the target
language and train a coreference model and (ii) translate the test data into
high-resource source language (e.g., English) and use a trained coreference
model for inference. We also perform rigorous analysis on the source of
errors for these two strategies, indicating the quality of machine translation
models as the primary limiting factor.

Finally, in Chapter 6, we provide a concise yet comprehensive summary
of the significant discoveries made throughout this thesis. This summary
highlights the key insights that emerged from the research, providing the
reader with a clear understanding of the thesis’s main findings. Addition-
ally, we provide recommendations for future research directions based on
the conclusions drawn from the study, underscoring the importance of
continued exploration and discovery in the field.





1
Introduction

“Those [. . . ] who had been around for a long time, can see old ideas reappearing in
new guises [. . . ]. But the new costumes are better made, of better materials, as well
as more becoming: so research is not so much going round in circles as ascending a
spiral."

— Karen Spärck Jones

Artificial Intelligence (AI) systems refer to software in computers or ma-
chines that are used to perform tasks that usually require human intelligence
(e.g., learning, reasoning, memorization) [1]. We use AI in our daily lives,
sometimes even without realising it, in applications such as search engines,
smart assistants, personalized social media feeds, chatbots [2], navigation
apps, weather forecasting [3], movie/friend recommendation [4] etc. AI is
also used in more complex applications such as autonomous vehicles [5],
logistics optimization [6] etc. Many of these AI systems are built using
Machine Learning (ML) algorithms that give computers the ability to learn
from data and improve over time without being explicitly programmed [7].

As a subfield of AI, Natural Language Processing (NLP) combines com-
putational linguistics with ML and statistical models to create systems that
are capable of automatically processing the human language as if it “un-
derstands” it [8]. NLP is at the heart of several technologies that interact
with human language, ranging from psycholinguistics applications such
as suicide prediction [9] and personality type detection [10] to facilitating
language translation [11] and sentiment analysis [12] in broader domains.
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A key driver behind the recent progress in NLP is the development
of Pretrained Language Models (PLMs). These models represent a funda-
mental shift in machine understanding and generation of human language.
Unlike earlier models that required extensive manual feature engineering,
pre-trained models use vast text data to learn language patterns and nu-
ances. This methodology enables them to grasp language context, grammar,
and semantics deeply, forming the basis for numerous NLP applications.
PLMs are central to cutting-edge NLP systems such as OpenAI’s Chat-
GPT, pushing the State-Of-The-Art (SOTA) in several tasks like machine
translation, natural language inference, sentiment analysis, and question
generation and answering etc. The versatility and efficiency of these models
have significantly lowered the barrier to NLP implementation, fostering
innovative applications in various fields, including education. In educa-
tion, PLMs have been employed to facilitate intelligent tutoring systems,
automate content summarization, and provide instant language support for
non-native speakers.

The focus of this dissertation is in adapting these advanced language models
mainly for applications in AI for education to automatically create edu-
cational content. This highlights the challenges in formulating test and
exercise questions in educational settings, which traditionally require sig-
nificant training, experience, time, and resources. This is even more critical
in high-stakes environments like certifications and tests, where questions
cannot be reused. The primary research involves two educational tasks: dis-
tractor generation and gap-filling exercise generation. Distractor generation task
refers to generating plausible but incorrect answers in multiple-choice ques-
tions, while gap-filling exercise generation refers to inducing well-chosen
gaps to generate grammar exercises from existing texts. These tasks have
seen a lot of research in the past. However, existing methods have left room
for further exploration. Recent advancements in pre-trained language mod-
els have opened new possibilities for research in these domains. In parallel,
as a secondary and less pronounced objective, this dissertation also explores
the adaptation of coreference resolution to new languages. Coreference reso-
lution, a crucial task in NLP, involves identifying references in a text that
relate to the same entities, a process vital for understanding and generating
coherent language. In educational settings, using coreference resolution
tools can improve the creation of high-quality, effective, and educationally
sound content. For example, in distractor generation for Multiple Choice
Questions (MCQs) based on reading comprehension, coreference resolution
can help create distractors that are contextually relevant to the question’s
content. If the question is about a specific character or event, the system
can avoid distractors about unrelated characters or events. Similarly, in
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systems for creating gap-filling exercises, a coreference resolution tool can
help choose sentences where filling a gap (replacing a pronoun or noun that
refers to something mentioned earlier) makes the exercise challenging but
achievable. This ensures the exercise tests understanding of the whole text.

The dissertation unfolds as follows: after comparing classical ML ap-
proaches and language model-based retrieval models (Chapter 2) for the
distractor generation task, I focused on improving the solution by extending
it to instruction-tuned large language models such as ChatGPT (Chapter 3).
Then, I focused on adapting a language model to the gap-fill exercise gen-
eration (Chapter 4). The final part, diverging slightly from educational
applications, delves into adapting coreference resolution (Chapter 5) to new
languages, underlining its significance in the broader NLP landscape.

In this chapter, we describe (i) language model evolution (ii) language
model adaptation techniques for NLP applications and (iii) the integration
of AI in the education domain in the context of this thesis. By offering a
concise overview and relevant literature references, the aim is to familiarize
the reader with the terminologies and concepts essential for understanding
the subsequent chapters. This chapter contains four sections:

• In 1.1, we outline the evolution of language models and describe
various architectures and components frequently used in NLP.

• In 1.2, we describe the role of AI in the education domain.

• In 1.3, we highlight the main contributions of our work.

• In 1.4, we list the publications produced during my PhD.

1.1 Language models in NLP

1.1.1 Foundations of Language models

A language model is a probabilistic model of the human language [13].
Language models compute the likelihood of an entire sequence of words
(e.g., a sentence, a paragraph) or the related task of predicting the probability
of an upcoming word. For example, such a model could predict that the
sequence “The sky is the limit” has a much higher probability of appearing
in text than the same sequence of words with different ordering “limit The is
sky the”. Moreover, in the sentence “I like cats more than ...”, such a model is
expected to assign a higher probability for the word “dog” to follow, rather
than the words “lunch” or “laugh”.

But why bother predicting upcoming words or assigning probabilities to
sentences? The answer is simple: the utility of these predictions has several
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real-life applications. They were first successfully used for automatic speech
recognition, where identifying words in a noisy input is important [14]. In
writing, language models’ importance spans simple tasks such as correcting
spelling errors and aiding in sentence auto-completion in search engines
(such as Google search or Bing) to generating creative content for systems
like chatbots, and translating languages.

A foundational approach in language modeling is the word n-gram model.
This model operates on the principle that the likelihood of a subsequent
word in a sequence is dependent only on a fixed number of preceding
words. Take, for instance, the bigram model, an n-gram model reliant on
just one preceding word. It calculates the probability of the next word based
on the frequency of its occurrence with its predecessor. For example, the
likelihood of the word “world” following “hello” is computed by comparing
the frequency of the phrase “hello world” against the total occurrences of
“hello” in a given text corpus. While n-grams are more basic compared
to state-of-the-art models discussed in the following sections, they are
fundamental in understanding language modeling principles.

1.1.2 Pretrained Language models (PLMs)

Pretraining in machine learning entails developing models using large
datasets and generic tasks with the aim of learning general-purpose abili-
ties and knowledge. This knowledge is then transferable to more specific
downstream tasks. This approach became the standard in the computer
vision community, particularly following the release of ImageNet [15], a
large labeled image dataset.

In NLP, initial strides were made with the introduction of static (context-
independent) word embeddings such as word2vec [16] and GloVe [17].
These early methods, which revolved around the concept of turning words
into a vector of numbers so computers can understand them, offered simple,
single-layer representations but necessitated training all remaining task-
specific layers from scratch, as opposed to pretraining the entire model.
Think of it as giving every word a unique code that shows its meaning
and how it is related to other words. For instance, "dog" and "puppy"
would have similar codes because they are related concepts. Despite the
widespread adoption of word embeddings improving several NLP tasks,
the need for substantial amounts of task-specific labeled data continued to
be challenging. Moreover, these word embeddings struggle with words that
have different meanings depending on the context. For instance, the word
‘bank’ will have the same representation, whether it refers to a financial
institution or a river’s edge.
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The practice of pretraining entire models gained prominence in NLP
with ELMo [18] and ULMFit [19], both utilizing the Long Short Term Mem-
ory (LSTM) architecture [20]. These models represented a significant leap,
forming sophisticated, contextual representations that went a step further
by giving words different codes based on their context in a sentence, and
marking a considerable performance gain in many tasks in the field of NLP.
However, a pivotal shift occurred in 2017 with the introduction of the Trans-
former architecture [21]. This model, employing an attention mechanism,
processes all input data elements in parallel, eliminating the requirement
for the computationally expensive recurrent computations found in LSTMs.
This innovation facilitated the efficient management of long-range depen-
dencies in data and significantly accelerated training processes, leading
to more expressive and nuanced representations. Unlike the reliance on
labeled datasets in computer vision, NLP pretraining depends on the avail-
ability of unlabeled data. The abundance of such data on the web allows
pretraining to scale up (i.e., it is often possible to achieve better performance
by training a larger model on a larger dataset).

In the following sections, we will first offer an overview of the Trans-
former architecture, subsequently discussing the various classes of PLMs
that are grounded in this architecture. This discussion aims to illuminate
the transformative impact of these advancements on the field of NLP.

1.1.2.1 The Transformer architecture

In 2017, Google introduced a new deep neural network architecture called
the Transformer in their seminal paper “Attention is all you need” [21]. Ini-
tially designed for machine translation, it quickly became a cornerstone
in tackling various NLP tasks. A transformer model is a type of encoder-
decoder model that processes data in a unique way. The encoder could
be thought of as part of the model that reads and understands the input
information, like reading a sentence in a book, and the decoder as the part
that takes what the encoder has understood and generates a response or
output, similar to answering a question about the sentence read. More
concretely, the transformer model uses a self-attention mechanism to assign
importance weights to every part of the input sequence and how they relate
to all other parts of the input. This self-attention mechanism maps input
sequences to output sequences of the same length. Each output element
contains information about all the other inputs in a way that reveals their
relevance in the current context. Specifically, for every input word repre-
sented by its embedding vector x, three smaller vectors called query (q),
key (k) and value (v) are created using weight matrices WQ, WK, WV that
are learned during the training process. The attention is then computed as
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a weighted sum of the values, where the weight assigned to each value is
computed by a compatibility function of the query with the corresponding
key. In practical terms, word embeddings are grouped in a matrix X, and
the queries, keys and values are grouped into matrices Q, K and V. The
self-attention is computed using equation 1.1.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1.1)

where Q = WQX, K = WKX and V = WVX (1.2)

Here, dk represents the dimension of the key vectors. The Transformer en-
hances its self-attention mechanism through “multi-headed” attention. This
involves creating multiple sets of query, key, value weight matrices, each
initialized randomly. This design allows the model to represent multiple
aspects of the input and focus on different positions simultaneously. It
achieves this by concatenating the outputs from the h separate self-attention
mechanisms, and projecting them via another learned weight matrix Wo

using the following equations.

MultiHead(Q, K, V) = Concat (head1, ..., headh)W
O (1.3)

where headi = Attention(QWQ
i , KWQ

i , VWQ
i ) (1.4)

Now that we have outlined the key innovation of the Transformer ar-
chitecture — the multi-headed self-attention module — let’s briefly explain
how it integrates into the model’s encoder-decoder architecture. The en-
coder is a stack of identical layers (i.e., 6 layers are used in the paper),
each with two modules: a multi-headed self-attention module followed by
point-wise fully connected feed-forward network module. Similarly, the
decoder component is a stack of identical decoder layers but has additional
multi-head cross-attention module that connects the encoder and decoder.
Each module in both the encoder and decoder is surrounded by a residual
connection, followed by a layer normalization that helps with gradient flow.

Unlike recurrent networks, the Transformer explicitly encodes the se-
quential nature of words using positional encodings in the input embed-
dings. Its architecture supports parallelization, allowing it to scale to large
numbers of trainable parameters. These deep networks can be trained effi-
ciently on parallel by leveraging Graphical Processing Unit (GPU) hardware,
enabling learning from vast data amounts.
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1.1.2.2 Encoder-only PLMs

Encoder-only models use the encoder part of the transformer architecture
and are typically trained using the pretraining objective called Masked Lan-
guage Model (MLM). The MLM task requires masking a portion of the input
text and then training a model to predict the masked tokens — in other
words, to reconstruct the original non-masked input. When training an
MLM, words are chosen at random to be masked using a special token
[MASK], or replaced by a random token. This forces the model to collect
bidirectional information in making predictions. Such models stack several
transformer layers to learn increasingly complex and meaningful representa-
tions. These types of models are typically used for producing embeddings.
The most popular PLMs include Bidirectional Encoder Representations
from Transformers (BERT) [22], RoBERTa [23], and XLM-R [24].

1.1.2.3 Decoder-only PLMs

The conventional autoregressive language task requires predicting the next
word given all previous words in a sequence. Models trained using this
training objective only utilized the decoder portion of the transformer
architecture. Similar to the MLM models, autoregressive models also stack
multiple transformer decoder layers with masked self-attention. This allows
the models to attend to all previous words in the sequence when predicting
the next tokens. Such models commonly called left-to-right models are
well-suited to language generation, in particular in response to prompts as
the continuation of a text. The most popular autoregressive models include
the OpenAI’s1 Generative Pre-trained Transformer (GPT) family GPT-2 [25],
GPT-3 [26], GPT-4 [27].

1.1.2.4 Encoder-Decoder PLMs

The encoder-decoder PLMs are class of models that learn to generate a se-
quence of words y1, y2, ...yn given an input sequence x1, x2, ...xm. The objec-
tive is to maximize the output’s log-likelihood: log(P(y1, ..., yn|x1, ..., xm); θT),
in which θT are the parameter in the full encoder-decoder transformer
model. The typical language task in these models is called the denoising
task. In this task, different forms of corruption are applied to the input
text, and the aim is to reconstruct the original sequence by denoising it.
Forms of sequence corruption include sentence permutation, token mask-
ing similar to the MLM task, document rotation etc. Representative models

1https://openai.com/blog/introducing-gpts

https://openai.com/blog/introducing-gpts
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include Text-to-Text Transfer Transformer (T5) [28] and Bidirectional Auto-
Regressive Transformers (BART) [29]. The sequence-to-sequence nature of
such PLMs makes them well-suited to perform tasks such as text summa-
rization, question generation and distractor generation.

Autoregressive
Decoder

<s> A B C D

A  B  C D E B      D 

Bidirectional
Encoder

A __ B __ E

Autoregressive
Decoder

<s> A B C D

A  B  C D E

Autoregressive language model
(e.g. GPT-3.5, GPT-4, LLaMA)

Predicting the next word  given
the previous words

students opened their ____
their books. students opened

students opened their books.

students [MASK] their books. 

Predicting the masked words
  given other words in the sequence

 Predicting the original sequence 
from corrupted sequence

Architecture 
illustration

books

eyes

Masked language model (e.g. 
BERT, RoBERTa, XLM-R)

Encoder-decoder language model
(e.g. T5, BART)

Training 
Objective

Example
exams

opened

A __ C __ E

Bidirectional
Encoder

.

Figure 1.1: The three most common PLM types along with their architecture and
training objective. Only the corruption strategy of document rotation
(i.e., from BART) is shown for the encoder-decoder language model.
Figure adapted from [29]

1.1.3 Fine-tuning PLMs

Up until the introduction of the Transformer structure in 2017 and subse-
quent pretrained models, the standard way of learning high-quality NLP
models was the fully supervised paradigm. In the fully-supervised paradigm,
a task-specific model is trained from scratch on a dataset of input-output
examples for the target task. The standard shifted to pretrain, fine-tune para-
digm, where a PLM is adapted to different downstream tasks by introducing
additional parameters and fine-tuning them using task-specific objective
functions. Fine-tuning typically utilizes less data, on the order of as few
as several hundred to a thousand examples, in a supervised manner than
the large amount of data, comprising several terabytes of text data with
billions of words, used in pretraining language models. In the following
paragraphs, we turn to describing strategies of how PLMs are adapted to
perform accurately on disparate NLP downstream tasks.
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PLMs as feature extractors: The most straightforward approach to using
large PLMs for downstream tasks is to “freeze” the model weights and use
its output vector representation as context-aware word embeddings for a
subsequent architecture, which is trained from scratch for the specific task.
While this still involves a forward pass through the PLM over the input
text, the LM’s weights are not fine-tuned, rendering this approach closer to
a feature extraction family of approaches in classic NLP. Examples of such a
strategy include cases with limited compute power or unsupervised tasks
such as word sense disambiguation [30], where frozen embeddings enable a
variety of operations such as cosine similarity, nearest-neighbour matching
or clustering to perform these tasks.

Fully or partially fine-tuning PLMs: This strategy fine-tunes some (i.e.,
typically the top few layers) or all the layers of the PLM, and then adds
one or two feed-forward output layers. The newly added layers are trained
together with the PLM in an end-to-end fashion to adapt the PLM to the
desired downstream task. Fine-tuning in this manner is most suitable
for sequence classification tasks (e.g., finetuned sentiment analysis [12],
natural language inference [23], semantic similarity [31]), sequence tagging
tasks such as Named Entity Recognition (NER), and span extraction tasks
(e.g., Question Answering [32]) in which the newly trained layers learn the
start and end span of an answer. One of the baselines for our distractor
generation task in Chapter 3 is an example of this approach.

Fine-tuning PLMs in Customized Models: Some tasks are specialized
and may require significant additional architecture to adapt the PLM to
their needs. With sufficient fine-tuning data, one may choose to train both
a substantial task-specific architecture and also fine-tune the PLM at the
same time. This is the preferred choice for structure prediction tasks such
as dependency parsing [33], NER [34], and coreference resolution [32]. Our
own proposed methods in Chapter 2 and Chapter 4 are examples of this
approach. We built specialized architectures to adapt PLMs to the task of
distractor ranking for creating Multiple-choice questions, and the task of
gap-fill exercise generation for grammar learning, respectively. Moreover,
in Chapter 5 we make use of existing PLM adapted coreference model that
adds the substantial e2e-coref algorithm [32], which transforms ratings of
pairs of spans produced by the language model into valid mention clusters.

Efficient fine-tuning: So far we have seen approaches where PLMs are
used as feature extractors, top layers are fine-tuned, or significant new ar-
chitecture is built on the top of the PLMs. However, another direction exists
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for the efficient usage of these models that is not limited to the previously
discussed approaches. The most common approach involves fine-tuning
a small network that is tightly coupled with the PLM known as Adapter
modules [35]. This method inserts a small set of newly initialized weights
in the PLM. All weights in the PLM are set to ‘freeze’, and only the newly
added weights of the adapters are updated during fine-tuning. Another
technique in the efficient fine-tuning of PLMs is the Low-rank adaptation
(LoRA) [36]. This technique, unlike adapters, approximates the existing
weights of the PLM using two smaller matrices through low-rank matrix
decomposition. During fine-tuning, LoRA updates only the low-rank ma-
trices, which are small compared to the full-weight matrices. The original
weights of the PLMs remain frozen.

1.1.4 Prompt and predict paradigm

The second significant paradigm shift in NLP revolves around the concept
of using textual prompts instead of fine-tuning a separate PLM for each
new downstream task, as discussed in the previous section. This approach
involves reformulating downstream tasks to resemble those encountered
during the PLM’s pretraining phase. By carefully constructing appropriate
prompts, one can direct the behavior of the PLM and leverage the knowl-
edge it has encoded. This method enables the PLM to predict the desired
output without necessitating additional task-specific fine-tuning. This ex-
citing prospect of employing a single PLM across various tasks is gaining
traction in the field.

With the emergence of large PLMs, the first signs of PLMs being multi-
task learners emerged. For example, GPT-2 understands that if an instruc-
tion “TL;DR” (“too long; didn’t read”) is provided as a prompt, then it
should generate a summarized form of the text supplied following the
instruction. This ability of PLMs to perform tasks only by relying on the
knowledge acquired during pretraining is called zero-shot learning. The per-
formance of such models was even further improved with the introduction
of instruction-tuned PLMs such as InstructGPT [37], which are explicitly
trained to follow user instructions.

Another common strategy, few-shot setting, takes this concept a step
further by providing the PLM with a handful of examples (so-called ‘shots’)
that demonstrate the downstream task as part of the prompt construction.
This process is called in-context learning and typically provides a few input-
output exemplars that demonstrate the task. This has been successful for
range of NLP tasks [26]. Another different prompting strategy, chain-of-
thought [38], induces PLMs to generate intermediate steps before predicting
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the final response.
In Chapter 3, we introduce a new variant of in-context few-shot learning

wherein the example demonstrations presented to the PLM are determined
dynamically, using a ranker model we built in Chapter 2.

1.2 AI for Education

The rapid advancement of artificial intelligence (AI) is profoundly trans-
forming various aspects of human interaction, communication, lifestyle,
learning, and professional practices. This transformation extends to the
realm of education, where AI’s impact is becoming increasingly significant.
AI in education can be defined as the application of AI technologies to the
four fundamental pillars of education: learning, teaching, assessment, and
administration [39]. These pillars collectively support and enhance the
educational process. In the following sections, we explore how AI has
been seamlessly integrated into learning, teaching, and assessment. This
exploration is particularly relevant to the thesis’s emphasis on automatic
educational question creation that supports these three crucial aspects of
education. We aim to understand AI’s role and transformative effect on
these educational dimensions. The role of AI in enhancing school adminis-
tration is noteworthy. It improves performance in various areas, including
educational management platforms, planning, scheduling, and identifying
systemic learning gaps to help educators in decision-making and enhance
their system-wide efficiency. For an in-depth analysis of AI’s impact on
administration, see reference [39].

1.2.1 AI in Learning

In the context of learning, AI is transforming the acquisition of knowledge
by students. The application of AI technologies in education primarily
focuses on enhancing learning through personalized and adaptive systems.
These systems utilize AI to tailor the curriculum and educational content to
the unique needs, learning styles, and pace of each learner [40]. They can
analyse a student’s past learning experiences and draw comparisons with
similar profiles among peers, thereby providing customized content and
recommendations.

Moreover, AI-powered educational tools like intelligent tutoring sys-
tems (ITS) [41] provide real-time assistance and feedback. This approach
enhances the efficiency and engagement of the learning process, adding
an element of enjoyment without necessitating direct intervention from
teachers. For instance, in a dialogue-based ITS, students can engage in
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step-by-step instructional tasks through conversations in natural language
with these systems. These intelligent systems dynamically adjust to the stu-
dent’s level of engagement, optimizing motivation and facilitating a more
personalized learning experience. Another prominent example of AI-based
learning is language learning applications like Duolingo 2, which support
learning by offering access to language courses, dictionaries, and gram-
mar, as well as providing real-time automated feedback on pronunciation,
fluency, and other aspects.

1.2.2 AI in Teaching

The second role of AI in education is to support teachers. First, it helps
teachers in creating more effective and engaging instructional materials.
Several AI systems analyze vast amounts of educational data to identify
the most effective teaching strategies for different groups of students [42–
44]. For instance, AI systems that utilize multimodal sensor data to detect
and analyze students’ affective states were employed [45, 46]. Teachers
used these systems to optimize their delivery of course material, refine
pedagogical approaches, and enhance their communication strategies based
on the identified emotional responses of students.

Second, AI systems have been used to enhance teachers’ teaching ability.
AI technologies have been applied to help teachers manage their classroom
teaching efficiently [47–50]. AI systems can also automate administrative
tasks (e.g., automatically generating variants of the same question using
equally plausible but different distractor sets in a multiple-choice question
[51]), freeing teachers to focus more on the pedagogical aspects of their
roles. In addition to supporting teaching, AI has also been used to support
teachers’ professional development [42, 52]. In these studies, AI agents that
analyzed real-time data in classrooms gave teachers comments and sugges-
tions on their teaching ability, such as questioning skills and knowledge of
pedagogical content of subject matter.

1.2.3 AI in Assessment

Integrating AI systems in educational assessment mainly focuses on au-
tomatic scoring and student performance prediction. AI systems have
been used to grade student responses ranging from simple quizzes [53] to
complex analytical essays [54]. This helps provide students with instant
feedback that promotes learning and corrects inaccurate first responses [55],
and also reduces teachers’ workload. This automation not only makes

2https://www.duolingo.com/

https://www.duolingo.com/
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the grading process simpler but can also ensure a level of consistency and
objectivity in evaluation that is challenging to achieve manually.

The second key area is using AI to predict student performance trajec-
tory [56–58], particularly in online education. These AI systems identify
trends and predict future academic outcomes by analyzing vast amounts
of data on students’ learning patterns, submission timelines, engagement
in discussion forums, and past performance. This predictive capability
is crucial for the early identification of students who might be at risk of
underperforming, allowing educators and institutions to intervene with
targeted support and resources. Furthermore, these insights can help in
customizing teaching approaches and learning materials to suit the needs
of individual students better.

1.2.4 Language models in AI in education

Pretrained language models are reshaping how educational content is cre-
ated, delivered, and interacted with. The surge in using PLMs for develop-
ing educational applications has been evident in recent years. For instance,
the number of research papers combining PLMs with educational appli-
cations in major academic venues has increased significantly. In the IEEE
TLT journal3, only 6 articles were published in 2020, the year I began work-
ing in this domain, compared to 17 in 2023. Similarly, at the NLP BEA
workshop4, the count rose from 4 papers in 2020 to 19 in 2023. In the subse-
quent paragraphs, we will briefly explore the application of PLMs across
the educational roles outlined in the preceding sections, and how this thesis
contributes to the field.

PLMs have been used to significantly contribute to personalized learning
experiences [59]. By analyzing student-generated text data, such as essays
or forum posts, these models can understand individual learning styles and
linguistic capabilities. Additionally, these models have also enhanced the
communication between teachers and students. For example, educational
chatbots and virtual assistants [60, 61] that use PLMs have been developed
to facilitate instant, on-demand interactions, answering student queries
and providing explanations. This role can act as an additional support,
extending the reach of teachers beyond the classroom.

In assessment, PLMs brought a new dimension to evaluating student
performance. These models were employed to grade written assignments
and automatically provide instant and constructive feedback [62–64]. Their
ability to understand and analyze natural language allows for a more nu-

3https://ieee-edusociety.org/publication/ieee-tlt
4https://sig-edu.org/bea/2023

https://ieee-edusociety.org/publication/ieee-tlt
https://sig-edu.org/bea/2023
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Table 1.1: Overview of contributions presented in this thesis.

Chapter Task Contribution

2 Distractor generation Frame the task as a ranking problem
and propose PLM-driven rankers

3 Distractor generation New strategy to guide LLMs to gen-
erate distractors that outperform the
rankers

4 Gap-filling exercise genera-
tion

New customized neural network
that adapts a PLM for the task

5 Coreference resolution Adapt coreference resolution to new
languages using translation tools

anced assessment of students’ written work, going beyond mere keyword
matching to assess comprehension, argumentation, and creativity.

In this thesis, we focus on using PLMs to automate the creation of
distractors for multiple-choice questions (MCQs) and develop gap-filling
exercises in educational settings. The goal is to enhance personalized learn-
ing systems, as these automated questions can be customized to match
the educational level and experiences of individual students. Additionally,
this approach significantly benefits teachers by alleviating the burden of
continuously generating tests and exercises.

Specifically, in distractor generation, teachers can create multiple ver-
sions of the same question, each with unique distractors. This diversity in
question sets serves a dual purpose: it curtails the likelihood of students
sharing answers and enhances the effectiveness of summative assessments.
This feature is particularly crucial in high-stakes examinations, like certifi-
cation tests, where question repetition is not viable due to security concerns.
In contrast, for gap-filling exercises, this methods can be especially useful
when introducing new grammar concepts. Teachers can effortlessly gener-
ate exercises based on their newly introduced grammar concepts to support
the formative assessment of their students.

Furthermore, the automated nature of these questions simplifies the
scoring process. This not only provides immediate feedback to students but
also significantly reduces the workload for teachers, enhancing the overall
efficiency of the assessment process.

1.3 Research contributions

In this section, we outline the main contribution of this thesis. We organize
our technical contribution in chapters, each one tackling clearly defined
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research questions. Table 1.1 gives an overview of the various contributions
presented in this thesis. In Chapters 2 – 4, we propose neural network
architectures and strategies for adapting PLMs for different educational
tasks. While in Chapter 5, we deviate from educational applications to
focus on adapting the task of coreference resolution to new languages. The
contribution of each chapter is summarized as follows:

• In Chapter 2, we propose a neural network architecture that adapts
multilingual PLM for the task of distractor ranking. We use this model
to smartly reuse distractors from a large existing set of manually cre-
ated answers and distractors for questions over a variety of domains,
subjects, and languages to help teachers create new MCQs. We demon-
strate that this model is able to generate higher quality distractors
compared to baselines. This is evidenced through a user study with
teachers as well as through automated metrics.

• In Chapter 3, as a direct extension of the proposed method in Chap-
ter 2, we leverage large language models (LLM) to generate free-form
distractors as compared to ranking existing distractors. We propose a
novel strategy for guiding LLMs in generating plausible distractors by
prompting them with dynamically retrieved example demonstrations
using a question ranker proposed in Chapter 2. We show that combin-
ing local models with LLMs produces higher quality distractors.

• In Chapter 4, we present a method to adapt a language model for
a gap-fill grammar exercise generation task. We propose and create
a specialized neural network architecture to customize a language
model to predict suitable gaps in texts (e.g., a paragraph, sentence)
for language learning in French. Moreover, we publicly release the
real-world dataset we created for the task.

• In Chapter 5, we extend our adaptability theme of the thesis to adapt-
ing coreference resolution, a key NLP task, to new languages. We ex-
amine the use of translation tools to facilitate coreference resolution in
resource-limited languages. We analyze two approaches: translating
training data from a high-resourced language to the target language
for model training, and translating test data to a high-resource lan-
guage (e.g., English) for model inference. We also analyze the main
challenges of these methods, identifying the limitations of machine
translation tools as the primary issue.

• In Chapter 6, we summarize our core findings and outline future
research directions opened by this thesis.
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Additionally, appendices contain additional published work that may not
directly align with the main theme of this thesis. Thus, in Appendix A [9]
we describe our contribution to CLPsych 2019 shared task where we achieve
competitive results using linear models and ensemble models to predict the
degree of suicide risk of people based on their posts on Reddit. Furthermore,
I contributed as a co-author in [12, 65–67].5 In [65], we provide the first
multi-format educational dataset in which each question is phrased in two
forms, cloze and open-ended, and linked to its grounding sentences. In [66],
we propose a strategy for selecting content (e.g., paragraph or sentence) to
support question generation systems in the context of education. In [67], we
propose a simple solution to a specific failure case on conjoined mentions
(e.g., ‘Tom and Mary’) of the SOTA word-level coreference resolution model.
Finally, in [12], we examine how fine-tuned multilingual models generalize
to out-of-distribution test data in zero-shot cross-lingual transfer scenarios
for sentiment classification. This study includes an analysis of the effects of
language and domain shifts between training and testing data.

5These four papers are not included in the appendices in accordance with the faculty policy.
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1.4 Publications

The research6 results obtained during this PhD research have been pub-
lished in scientific journals and presented at a series of international con-
ferences and workshops. The following list provides an overview of these
publications.

1.4.1 Publications in international journals
(listed in the Science Citation Index7)

I S.K. Bitew, A. Hadifar, L. Sterckx, J. Deleu, C. Develder, and T. De-
meester, Learning to Reuse Distractors to support Multiple Choice Question
Generation in Education. IEEE Transactions on Learning Technologies.
2022.

1.4.2 Publications in international conferences

III S.K. Bitew, J. Deleu, A. Seza Doğruöz, C. Develder and T. Demeester,
Learning from Partially Annotated Data: Example-aware Creation of Gap-
filling Exercises for Language Learning. Proceedings of the 18th Work-
shop on Innovative Use of NLP for Building Educational Applications
(BEA) at EACL, 2023

IV S.K. Bitew, J. Deleu, C. Develder and T. Demeester, Lazy Low-Resource
Coreference Resolution: a Study on Leveraging Black-Box Translation Tools.
Proceedings of the Fourth Workshop on Computational Models of
Reference, Anaphora and Coreference (CRAC) at EMNLP 2021.

V S.K. Bitew, J. Deleu, C. Develder and T. Demeester, Distractor Gener-
ation for Multiple-Choice Questions with Predictive Prompting and Large
Language Models. Proceedings of the First Workshop on Responsible
Knowledge Discovery in Education (RKDE) at ECML-PKDD 2023.

VI S.K. Bitew, G. Bekoulis, J. Deleu, L. Sterckx, K. Zaporojets, T. De-
meester, and C. Develder, Predicting Suicide Risk from Online Postings

6This research was funded by the Flanders Innovation and Entrepreneurship (VLAIO),
Flanders, Belgium, through the imec-icon Project “AI-Driven e-Assessment” (AIDA); and in
part by the Flemish Government through the “Onderzoeksprogramma ArtificiëleIntelligentie
(AI) Vlaanderen” Program, Research Foundation Flanders and the Flemish Government un-
der the Research Program Artificial Intelligence. This research would not have been possible
without their support.

7The publications listed are recognized as ‘A1 publications’, according to the following
definition used by Ghent University: “A1 publications are articles listed in the Science Citation
Index, the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of
Science, restricted to contributions listed as article, review, letter, note or proceedings paper.”
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in Reddit – The UGent-IDLab submission to the CLPysch 2019 Shared Task
A. 6th Ann. Workshop on Computational Linguistics and Clinical
Psychology (CLPsych 2019) at NAACL-HLT, 2019.

1.4.3 Other publications (not included in this thesis)

VII S.K. Bitew, V. Schelstraete, K. Zaporojets, K. Van Nieuwenhove,
R. Meganck, and C. Develder, Personality Style Recognition via Ma-
chine Learning: Identifying Anaclitic and Introjective Personality Styles
from Patients’ Speech. Computational Linguistics in the Netherlands
Journal, 2023.

VIII A. Hadifar, S.K. Bitew , J. Deleu, C. Develder, and T. Demeester,
EduQG: A Multi-Format Multiple-Choice Dataset for the Educational Do-
main. IEEE-Access, 2023.

IX A. Hadifar, S.K. Bitew, J. Deleu, V. Hoste, C. Develder, and T. De-
meester, Diverse Content Selection for Educational Question Generation.
Proceedings of the Student Research Workshop at EACL (SRW), 2023.

X K. D’Oosterlinck, S.K. Bitew, B. Papineau, C. Potts, T. Demeester,
and C. Develder, CAW-coref: Conjunction-Aware Word-level Coreference
Resolution. Proceedings of the Sixth Workshop on Computational
Models of Reference, Anaphora and Coreference (CRAC) at EMNLP
2023.

XI M. De Raedt, S.K. Bitew, Fréderic Godin, T. Demeester, and C. De-
velder, Zero Shot Cross-Lingual Sentiment Classification under Distribu-
tion Shift: an Exploratory Study. Proceedings of the Third Workshop on
Multilingual Representation Learning (MRL) at EMNLP 2023.
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2
Adapting Language Models to

Distractor Ranking for Educational
Multiple-Choice Questions

This chapter highlights our contribution to a generic educational task of distractor
generation. We introduce a new neural network architecture that adapts a multilin-
gual pretrained language model to ranking existing distractors. Our innovative,
data-driven method employs context-aware representations from language models
for both questions and distractors. We use this model to smartly reuse distractors
from a large existing set of manually created answers and distractors for questions
over a variety of domains, subjects, and languages to help teachers create new
MCQs. We show that our model is able to generate better quality distractors
compared to baselines using automated metrics and a user study with teachers we
conducted.

⋆ ⋆ ⋆

Learning to Reuse Distractors to support Multiple Choice
Question Generation in Education

S.K. Bitew, A. Hadifar, L. Sterckx, J. Deleu, C. Develder and
T. Demeester
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Abstract Multiple choice questions (MCQs) are widely used in digital learn-
ing systems, as they allow for automating the assessment process. However,
due to the increased digital literacy of students and the advent of social
media platforms, MCQ tests are widely shared online, and teachers are
continuously challenged to create new questions, which is an expensive
and time-consuming task. A particularly sensitive aspect of MCQ creation
is to devise relevant distractors, i.e., wrong answers that are not easily
identifiable as being wrong. This paper studies how a large existing set
of manually created answers and distractors for questions over a variety
of domains, subjects, and languages can be leveraged to help teachers in
creating new MCQs, by the smart reuse of existing distractors. We built
several data-driven models based on context-aware question and distractor
representations, and compared them with static feature-based models. The
proposed models are evaluated with automated metrics and in a realistic
user test with teachers. Both automatic and human evaluations indicate
that context-aware models consistently outperform a static feature-based
approach. For our best-performing context-aware model, on average 3
distractors out of the 10 shown to teachers were rated as high-quality dis-
tractors. We create a performance benchmark, and make it public, to enable
comparison between different approaches and to introduce a more stan-
dardized evaluation of the task. The benchmark contains a test of 298
educational questions covering multiple subjects & languages and a 77k
multilingual pool of distractor vocabulary for future research.

2.1 Introduction

Online learning has become an indispensable part of educational institu-
tions. It has emerged as a necessary resource for students and schools all
over the globe. The recent COVID-19 pandemic has made the transition to
online learning even more pressing. One very important aspect of online
learning is the need to generate homework, test, and exam exercises to aid
and evaluate the learning progress of students [1]. Multiple choice ques-
tions (MCQs) are the most common form of exercises [2] in online education
as they can easily be scored automatically. However, the construction of
MCQs is time consuming [3] and there is a need to continuously generate
new (variants of) questions, especially for testing, since students tend to
share questions and correct answers from MCQs online (e.g., through social
media).

The rapid digitization of educational resources opens up opportuni-
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ties to adopt artificial intelligence (AI) to automate the process of MCQ
construction. A substantial number of questions already exist in a digital
format, thus providing the required data as a first step toward building AI
systems. The automation of MCQ construction could support both teachers
and learners. Teachers could benefit from an increased efficiency in creating
questions, in their already high workload. Students’ learning experience
could improve due to increased practice opportunities based on automati-
cally generated exercises, and if these systems are sufficiently accurate, they
could power personalized learning [4].

A crucial step in MCQ creation is the generation of distractors [5]. Dis-
tractors are incorrect options that are related to the answer to some degree.
The quality of an MCQ heavily depends on the quality of distractors [3].
If the distractors do not sufficiently challenge learners, picking the correct
answer becomes easy, ultimately degrading the discriminative power of the
question. The automatic suggestion of distractors will be the focus of this
paper.

Several works have already proposed distractor generation techniques
for automatic MCQ creation, mostly based on selecting distractors accord-
ing to their similarity to the correct answer. In general, two approaches
are used to measure the similarity between distractors and an answer:
graph-based and corpus-based methods. Graph-based approaches use the
semantic distance between concepts in the graph as a similarity measure.
In language learning applications, typically WordNet [6, 7] is used to gen-
erate distractors, while for factoid questions domain-specific (ontologies)
are used to generate distractors [8–11]. In corpus-based methods, similarity
between distractors and answers has been defined as having similar fre-
quency count [12], belonging to the same POS class [13], having a high
co-occurrence likelihood [14], having similar phonetic and morphological
features [7], and being nearby in embedding spaces [15–17]. Other works
such as [5, 18–20] use machine learning models to generate distractors by
using a combination of the previous features and other types of information
such as Term-Frequency Inverse-Document-Frequency (TF-IDF) scores.

While the current state-of-the-art in MCQ creation is promising, we
see a number of limitations. First of all, existing models are often domain
specific. Indeed, the proposed techniques are tailored to the application
and distractor types. In language learning, such as vocabulary, grammar
or tense usage exercises, typically similarity based on basic syntactic and
statistical information works well: frequency, POS information, etc. In other
domains, such as science, health, history, geography, etc., distractors should
be selected on deeper understanding of context and semantics, and the
current methods fail to capture such information.
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The second limitation, language dependency, is especially applicable to
factoids. Models should be agnostic to language because facts do not change
with languages. Moreover, building a new model for each language could
be daunting task as it would require enough training data for each language.

In this work, we study how the automatic retrieval of distractors can
facilitate the efficient construction of MCQs. We use a high-quality large
dataset of question, answer, distractor triples that are diverse in terms of
language, domain, and type of questions. Our dataset was made available
by a commercial organization active in the field of e-assessment (see Sec-
tion 2.3.2), and is therefore representative for the educational domain, with
a total of 62k MCQ, none of them identical, encompassing only 92k different
answers and distractors. Despite an average of 2.4 distractors per question,
there is a large reuse of distractors over different questions. This motivates
our premise to retrieve and reuse distractors for new questions. We make
use of the latest data-driven Natural Language Processing (NLP) techniques
to retrieve candidate distractors. We propose context-aware multilingual mod-
els that are based on deep neural network models that select distractors
by taking into account the context of the question. They are also able to
handle variety of distractors in terms of length and type. We compare our
proposed models to a competitive feature-based baseline that is based on
classical machine learning methods trained on several handcrafted features.

The methods are evaluated for distractor quality using automated met-
rics and a real-world user test with teachers. Both the automatic evaluation
and the user study with teachers indicate that the proposed context-aware
methods outperform the feature-based baseline. Our contribution can be
summarized as follows:

• We built three multilingual Transformer-based distractor retrieval
models that suggest distractors to teachers for multiple subjects in
different languages. The first model (Section 2.3.4.3) requires similar
distractors to have similar semantic representations, while the second
(Section 2.3.4.2) learns similar representations for similar questions,
and the last combines the complementary advantages of these two
models (Section 2.3.4.3).

• We performed a user study with teachers to evaluate the quality of
distractors proposed by the models, based on a four-level annotation
scheme designed for that purpose.

• The evaluation of our best model on in-distribution held-out data
reveals an average increase of 20.4% in terms of recall at 10, compared
to our baseline model adapted from [19]. The teacher-based annota-
tions on language learning exercises show an increase by 4.3% in the
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fraction of good distractors among the top 10 results, compared to
teacher annotations for the same baseline. For factoid questions, the
fraction of quality distractors more than doubles w.r.t. the baseline,
with an improvement of 15.3%.

• We released1 a test-set of educational questions of 6 subjects with 50
MCQs per subject and annotated distractors, and 77k size distractor
vocabulary as benchmark to stimulate further research. The dataset,
which is made by experts, contains multilingual and multi-domain
distractors.

The remainder of the paper is organized as follows: Section 2.2 describes
the relevant work in MCQs in general and distractor generation in particular.
Section 2.3 introduces the dataset, explains the details of the proposed
methods and the evaluation setup of the user study with teachers. In
Section 2.5, the results of both the user study and automated evaluations
is reported. And finally, in Section 2.6, we present the conclusion, lines for
future work, and limitations of our proposed models.

2.2 Related work

2.2.1 MCQs in Education

Multiple choice questions (MCQs) are widely used forms of exercises that
require students to select the best possible answer from a set of given options.
They are used in the context of learning, and assessing learners’ knowledge
and skills. MCQs are categorized as objective types of questions because
they primarily deal with the facts or knowledge embedded in a text rather
than subjective opinions [21]. It has been shown that recalling information in
response to a multiple-choice test question bolsters memorizing capability,
which leads to better retention of that information over time. It can also
change the way information is represented in memory, potentially resulting
in deeper understanding [22] of concepts.

An MCQ item consists of three elements:

• stem: is the question, statement, or lead-in to the question.

• key: the correct answer.

• distractors: alternative answers meant to challenge students’ under-
standing of the topic.

1https://dx.doi.org/10.21227/gnpy-d910 or https://github.
com/semerekiros/dist-retrieval

https://dx.doi.org/10.21227/gnpy-d910
https://github.com/semerekiros/dist-retrieval
https://github.com/semerekiros/dist-retrieval
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For example, consider the MCQ in the first row of Table 2.3: the stem of the
MCQ is “Which inhabitants are not happy with Ethiopia’s plans of the Nile?".
Four potential answers are given with the question. Among these, the
correct answer is “Egyptians", which is the key. The alternatives are the
distractors.

MCQs are used in several teaching domains such as information tech-
nology [23], health [24, 25], historical knowledge [26], etc. They are also
commonly used in standardized tests such as GRE and TOEFL. MCQs are
preferred to other question formats because they are easy to score, and
students can also answer them relatively quickly since typing responses is
not required. Moreover, MCQs enable a high level of test validity if they are
drawn from a representative sample of the content areas that make up the
pre-determined learning outcomes [25]. The most time-consuming and non-
trivial task in constructing MCQ is distractor generation [3, 19]. Distractors
should be plausible enough to force learners to put some thought before
selecting the correct answer. Preparing good multiple-choice questions
is a skill that requires formal training [27, 28]. Moreover, several MCQ
item writing guidelines are used by content specialists when they prepare
educational tests. These guidelines also include recommendations for devel-
oping and using distractors [29–31]. Despite these guidelines, inexperienced
teachers may still construct poor MCQs due to lack of training and limited
time [32].

Besides reducing teachers’ workloads, the automation of the distractor
generation could potentially correct some minor mistakes made by teachers.
For example, one of the rules suggested by [29] says: “the length of distrac-
tors and the key should be about the same”. Such property could be easily
integrated in the automation process.

MCQs also have drawbacks; they are typically used to measure lower-
order levels of knowledge, and guesswork can be a factor in answering a
question with a limited number of alternatives. Furthermore, because of
a few missing details, learners’ partial understanding of a topic may not
be sufficient to correctly answer a question, resulting in partial knowledge
not being credited by MCQs [22]. Nonetheless, MCQs are still extensively
utilized in large-scale tests since they are efficient to administer and easy to
score objectively [2].

2.2.2 Distractor Generation

Many strategies have been developed for generating distractors for a given
question. The most common approach is to select a distractor based on its
similarity to the key for a given question. Many researchers approximate
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the similarity between distractor and key according to WordNet [33–35].
WordNet [36] is a lexical database that groups words into sets of synonyms,
and concepts semantically close to the key are used as distractors. The usage
of such lexical databases is sound for language or vocabulary learning but
not for factoid type questions. We instead provide a more general approach
that could be used for both tasks, and instead of only using the key as the
source of information while suggesting distractors, we also make use of the
stem.

For learning factual knowledge, several works rely on the use of specific
domain ontology as a proxy for similarity. Papasalouros et al. [8] employ
several ontology-based strategies to generate distractors for MCQ ques-
tionnaires. For example, they generate “Brussels is a mountain" as a good
distractor for an answer “Everest is a mountain" because both concept City
and concept Mountain share the parent concept Location. Another very
similar work by Lopetegui et al. [37] selects distractors that are declared
siblings of the answer in a domain-specific ontology. The work by Leo et
al. [10] improves upon the previous works by generating multi-word dis-
tractors from an ontology in the medical domain. Other works that rely
on knowledge bases apply query relaxation methods, where the queries
used to generate the keys were slightly relaxed to generate distractors that
share similar features with the key [9, 38, 39]. While the methods in these
works are dependent on their respective ontologies, we provide an approach
that is ontology-agnostic and instead uses contextual similarity between
distractors and questions.

Another line of works for distractor generation uses machine-learning
models. Liu et al. [5] use a regression model based on characteristics such
as character glyph, phonological, and semantic similarity for generating
distractors in Chinese. Liang et al. [19] use two methods to rank distrac-
tors in the domain of school sciences. The first method adopts machine
learning classifiers on manually engineered features (i.e., edit distance, POS
similarity, etc.) to rank distractors. The second uses generative adversarial
networks to rank distractors. Our baseline method is inspired by their first
approach but was made to account for the multilingual nature of our dataset
by extending the feature set.

There have also been a number of works on generating distractors in
the context of machine comprehension [40]. Distractor generation strategies
that fall in this category assume access to a contextual resource such as a
book chapter, an article or a wikipedia page where the MCQ was produced
from. The aim is then to generate a distractor that takes into account the
reading comprehension text, and a pair composed of the question and its
correct answer that originated from the text [41–43]. This line of work is
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incomparable to our work because we do not have access to an external
contextual resource the questions were prepared from.

In this paper, we focus on building one model that is able to suggest
candidate distractors for teachers both in the context of language and fac-
tual knowledge learning. Unlike previous methods, we tackle distractor
generation with a multilingual dataset. Our distractors are diverse both in
terms of domain and language. Moreover, the distractors are not limited to
single words only.

2.3 Methodology

In this section, we formally define distractor generation as a ranking prob-
lem; describe our datasets; describe in detail the feature-based baseline
and proposed context-aware models including their training strategies &
prediction mechanisms.

2.3.1 Task Definition: Distractor Retrieval

We assume access to a distractor candidate set D and a training MCQ
dataset M. Note that D can be obtained by pooling all answers (keys and
distractors) from M (as in our experimental setting), but could also be
augmented, for example, with keywords extracted from particular source
texts. We formally write M = {(si, ki,Di)|i = 1, . . . , N}. where for each
item i among all N available MCQs, si refers to the question stem, ki is the
correct answer key, and Di =

{
d(1)i , ..., d(mi)

i
}
⊆ D are the distractors in

the MCQ linked to si and ki. The aim of the distractor retrieval task is to
learn a point-wise ranking score ri(d) : (si, ki, d) → [0, 1] for all d ∈ D, such
that distractors in Di are ranked higher than those in D \Di, when sorted
according to the decreasing score ri(d).
This task definition resembles the metric learning [44] problem in infor-
mation retrieval. To learn the ranking function, we propose two types of
models: feature-based models and context-aware neural networks.

2.3.2 Data

In this section, we describe our datasets, namely: (i) Televic dataset, a big
dataset that we used to train our models. (ii) Wezooz dataset, a small-scale
external test set used for evaluation.



DISTRACTOR RANKING 35

Table 2.1: The statistics of our dataset

Train Validation Test
# Questions 61758 600 500
# Distractors per question 2.4 2.3 2.3
Avg question length 27.8 tokens 28.1 tokens 27.6 tokens
Avg distractor length 2.2 tokens 2.3 tokens 2.1 tokens
Avg answer length 2.2 tokens 2.3 tokens 2.2 tokens
Total # distractors 94,205 - -
Total # distractors ≤ 6 tokens 77,505 - -

2.3.2.1 Televic dataset

This data is gathered through Televic Education’s platform assessmentQ.2

The tool is a comprehensive online platform for interactive workforce learn-
ing and high-stakes exams. It allows teachers to compose their questions
and answers for practice and assessment. As a result, the dataset is made
up of a large and high-quality set of questions, answers and distractors,
manually created by experts in their respective fields. It encompasses a wide
range of domains, subjects, and languages, without however any metadata
on the particular course subjects that apply to the individual items.

We randomly divide our dataset into train/validation/test splits. We
discard distractors with more than 6 tokens as they are very rare and un-
likely to be reused in different contexts. We keep questions with at least one
distractor. Table 2.1 summarizes the statistics of our dataset. The dataset
contains around 62k MCQs in total. The size of the dataset is relatively
large when compared to previously reported educational MCQ datasets
such as SCiQ [45], and MCQL [19] which contain 13.7K and 7.1K MCQs
respectively. On average, a question has more than 2 distractors, and con-
tains exactly one answer. We use all the answer keys and distractors in the
preprocessed dataset as the pool of candidate distractors (i.e., list of 77,505
filtered distractors) for proposing distractors for any new question.

The distractors in the dataset are not limited to single word distractors.
More than 65% of the distractors contain two or more words as can be seen
in Fig. 2.1a.

The data stems from multiple languages. Figure 2.1b shows the language
distribution as detected by an off-the-shelf language classifier.4 Given that
Televic is a Belgian company, more than 50% of the questions are in Dutch,

2https://www.televic-education.com/en/assessmentq
3We used ISO 639-1:2002 standard for names of languages.
4We used the langid language classifier: https://github.com/saffsd/langid.py

https://www.televic-education.com/en/assessmentq
https://github.com/saffsd/langid.py
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Figure 2.1: (a) distractor length in number of tokens and (b) language distribution
for the Televic dataset.

while French and English are the next most common languages in the
dataset.

Another dimension of the dataset is its domain diversity. It comprises
questions about language/vocabulary learning (e.g., French and English)
and factoids covering subjects such as Math, Health, History, Geography,
and Sciences. Besides material from secondary school education, it covers
materials from assessment tasks for professionals such as training in hos-
pitals or manufacturing firms. The data is anonymized and contains no
customer information.

Depending on the question type we observe different types of distractors.
(1) Factoid distractors: names of people, locations, organizations, concepts,
dates. (2) Distractors with numerical elements, such as multiples, factors,
rounding errors, etc. (3) Language distractors: spelling, grammatical, tense,
etc. However, the proposed models are agnostic of the type and origin
of the data, and the automated evaluation on the Televic test set contains
a random sample covering the different question types and origins (see
Section 2.5.1). Note that although our dataset is a real-world commercial
dataset, it only contains single-answer MCQs. However, the models we will
put forward, could be readily extended towards multiple-answer MCQs, if
such data were available.
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2.3.2.2 WeZooz dataset

This data is a small-scale test set of questions gathered from WeZooz Acad-
emy,5 which is a Flanders-based company providing an online platform
with digital teaching materials for secondary school students and teachers.
We selected four subjects; Natural sciences, Geography, Biology and History.
Each subject was made to contain a fixed list of 50 questions that were
randomly selected, and augmented with distractor annotations by teachers
for these respective subjects (see Section 2.4). Note that this is an external
test set, in the sense that the data distribution in the training set is not
necessarily representative for this test set. This serves as a proof-of-concept
for the general validity of our proposed method and models to specific use
cases.

2.3.3 Feature-based Distractor Scoring

We built a strong feature-based model as our baseline. Feature-based mod-
els are a class of machine learning models that require a pre-specified set
of handcrafted features as input. We designed 20 types of features captur-
ing similarity between questions, answers, and the collection of candidate
distractors. Formally, given a triplet (s, k, d) of question stem, key and dis-
tractor, our feature-based model first maps the input into a 20-dimensional
feature vector ϕ (s, k, d) ∈ R20, after which a classifier is trained to score
the triplets according to compatibility of the question-answer-distractor
combination. Our set of features can be segmented into four categories
which are described below. A more detailed explanation of each feature can
be found in Appendix 2.B.

(i) Morphological Features: this category contains features that are related
to the form and shape of words that occur in our (s, k, d) triplets. This
includes features such as edit distance, difference in token length,
longest common suffix between k & d, etc.

(ii) Static embedding based features: We trained a Word2Vec model [46] on
our dataset to learn static embeddings for the distractors. We treat
distractors and answers attached to the same question as chunks shar-
ing similar context. The objective is to learn a vector space in which
their representations will also be closer. We leverage the embedding
representations to extract several numerical features. For example,
we calculate the cosine similarity and word mover’s distance [47]
between the embeddings of d & k.

5https://www.wezoozacademy.be/

https://www.wezoozacademy.be/
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(iii) Language Prior: since our data is multilingual we also calculate the
prior probability of the candidate distractor matching with the lan-
guage of the question, and attach it to each feature vector.

(iv) Corpus-based Features: this category contains features that are derived
from the statistics of words in the corpus. It includes features such as
the frequency of a distractor in the dataset and the inverse document
frequency of distractors.

As classifier, we apply a Logistic Regression (LR) model to distinguish
feature representations of actual question-answer-distractor triplets, present
in the training, from triplets for which the distractor components belong
to different question-answer combinations, sampled randomly. During
training, the model’s parameters are set to output high scores for actual
triplets while the model is penalized for predicting high scores for others.

2.3.4 Context-aware Neural Distractor Scoring

Advanced context-aware neural models, unlike traditional feature-based
models, do not require manual feature engineering. They have the ability to
represent words depending on their semantic role and context in the consid-
ered text. In this work, we primarily focus on such context-aware models
called transformers [48], which provide rich representations, and proved
to achieve state-of-the-art results for many tasks in NLP such as question
answering [49], machine translation [50], and text summarization [51]. A
transformer is a deep neural network that uses a self-attention mechanism
to assign importance weights to every part of the input sequence in how
they are related to all other parts of the input. Transformers can scale to very
large numbers of trainable parameters, stacked into very deep networks,
which can still be trained very efficiently on parallel GPU hardware and
thus learn from very large amounts of data. In NLP, such models are often
trained on large unlabeled corpora to learn the inherent word and sentence
level correlations (i.e., to model language structure) between varying con-
texts. This process is called pretraining, and downstream NLP tasks usually
rely on such a pretrained generic model to be finetuned to their more specific
needs instead of training a new model from scratch. Leveraging the knowl-
edge gained during a generic pretraining process to improve prediction
effectiveness for a specific supervised learning task, is a form of transfer
learning [52, 53]. A common language task often used for pretraining trans-
former models called masked language modelling (MLM) requires masking a
portion of the input text and then training a model to predict the masked
tokens — in other words, to reconstruct the original non-masked input.
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Figure 2.2: Our proposed context-aware distractor retrieval systems. For the D-SIM
model (i.e., left), distractor d and concatenation of the stem s & key k
separated by [SEP] are fed into the same mBERT(D-SIM) encoder, and
then their respective vector representations at [CLS] are used as inputs
to two different dense layers that do not share parameters. The outputs
of these dense layers, h(d) & h(sk) are used to calculate the similarity
between d & s[sep]k using the dot product. Similarly for Q-SIM (i.e.,
right), two question stems i & j are encoded separately using the same
mBERT(Q-SIM), and their respective [CLS] output vectors are fed into two
different dense layers (i.e., dense layer(i) & dense layer(j)) to produce their

corresponding representations h(si) & h(sj). These are used to calculate
their similarity between the two stems using dot product. The DQ-SIM
model (i.e., top) linearly combines the two models using a merging layer
with an α parameter. (⋆) denotes parameter reuse by the encoders.

BERT (Bidirectional Encoder Representations from transformers) [54] is
the most popular pretrained masked language model and has been widely
used in many downstream tasks such as question answering & generation,
machine reading comprehension, and machine translation, by fine-tuning it
using a labelled dataset that provides supervision signal.

In this work, we present models to rank and retrieve distractors, based
on such a pretrained transformer text encoder, which we finetuned by requir-
ing similar distractors to have similar representations, and similar questions
also to have similar representation. In the following paragraphs, we provide
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a detailed description of these models, visualized in Fig. 2.2, followed by a
description of the training procedure and the inference mechanism.

2.3.4.1 Distractor similarity based model (D-SIM)

We hypothesize that distractors co-occurring within the same MCQ item
are semantically related through their link with the corresponding ques-
tion stem and answer key. Following that hypothesis, the D-SIM model is
designed (and trained) to yield a similar vector representation for a given
(stem, key) pair (si, ki), as each of the corresponding distractors di. Follow-
ing the same logic, all candidate distractors d ∈ D can then be scored in
terms of their similarity (in representation space) with a given new (stem,
key) pair, after which the top candidates are returned by the model as
likely valid distractors. We use the pretrained multilingual BERT (mBERT)
encoder [54], followed by a fully connected linear layer (i.e., dense layer)
to obtain initial representations for a (stem, key) pair, as well as for the
distractors. We designed our model in a bi-encoder setting inspired by [55],
and schematically shown on the left-hand side of Fig. 2.2. The distractor d
is fed into the mBERT encoder, and the output representation of the [CLS]
token6 is used as an input to the dense layer. The output from the dense
layer is taken as the corresponding representation hd. The considered stem
and key are concatenated into a single sequence of tokens7 as “si [SEP] ki”,
which is fed into the same mBERT encoder (i.e., with parameter reuse, as
indicated by the double arrow in Fig. 2.2). Similar to the distractor embed-
ding, we take the [CLS] token representation and feed it to the dense layer
(i.e., different dense layer with no parameter sharing), and take its output as
the vector representation of the key-aware stem hsk. Finally, the similarity
score between (si, ki) and d is obtained as the dot product between their
respective representations:

rD-SIM
i (d) = h(sk)

i · h(d)

During training, the encoder is fine-tuned to achieve higher scores for
compatible stem/key and distractor combinations, and lower scores for
incompatible ones (as described in Section 2.3.5 in more detail).

2.3.4.2 Question similarity based model (Q-SIM)

This model is based on the assumption that different questions that share
one or more distractors or answer keys are likely semantically related, such

6[CLS] is a special token that is prepended to the input, and its corresponding output
representation is pretrained to represent the entire sequence that is used for classification tasks.

7The often used [SEP] token is a special token known by the model, that separates input
sentences.
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Table 2.2: Q-SIM training data examples.

Distractor/Answer Associated Questions Description

koolhydraten en
vetten

1. Welke groepen voedingsstoffen lev-
eren vooral energie?

Factoid questions with multi-word
distractor in Dutch.

2. Welke voedselcomponenten kun-
nen stoffen leveren die zowel bij as-
similatie als bij dissimilatie in cellen
worden gebruikt?

surrounded 1. The guest house is . . . on the coun-
tryside.

A fill in the gap question for English
language learning.

2. The valley was . . . by forests.

Marokko 1. Welk land is in 2011 gesplitst door
het langdurig conflict in Darfur ?

A combination of fill-in the gap and
normal questions

2. Rabat is de hoofdstad van . . .

that their associated distractors could be used as good candidate distractors
for one another. To accomplish this, we first rearrange the training data in
such a way that these questions, sharing at least one distractor or key, are
clustered together (see Table 2.2 for an example). Then, we train our Q-SIM

model to produce similar representation for question stem pairs (si, sj) that
are in the same cluster. The right-hand side of Fig. 2.2 depicts the Q-SIM

model, again based on a bi-encoder architecture. The stem representation
h(s)i for a question MCQi is again obtained through an mBERT encoder,

followed by a fully connected linear layer, similarly to h(sk)
i but ignoring the

question key. The Q-SIM scoring function is defined as

rQ-SIM
i (dj) = h(s)i · h(s)j

and can be interpreted as follows. For a given question MCQi, its stem
representation h(s)i is compared through dot product similarity with the
representation of any candidate distractor dj originating from a question
MCQj. The particular representation of dj assumed in Q-SIM is in fact

MCQj’s stem representation h(s)j . Note that Q-SIM does not allow making
a distinction in terms of score between different distractors from the same
MCQ. Candidate distractors with the same score are considered equally
likely according to Q-SIM, and ranked in an arbitrary order. Based on
the intuition outlined above, more complex formulations for Q-SIM can
be designed, for example with a feature characterizing the nature of the
pairwise comparison (i.e., the actual answers of the considered questions,
two of their respective distractors, or the answer for the one and a distractor
for the other). However, given the already significant improvement of the
presented basic Q-SIM formulation (see Section 2.5.1), we chose to include
only that model in our evaluation. In fact, its simple intuitive formulation



42 CHAPTER 2

makes it straightforward to explain to teachers, which is an important aspect
in their trust in the model [56].

2.3.4.3 Distractor and Question similarity model (DQ-SIM)

This model combines the previous two models using a merging layer (visu-
alized on top of Fig. 2.2), based on the intuition that a well-chosen combined
model may benefit from the complementary advantages of both individual
models. This merging layer combines the outputs from D-SIM and Q-SIM

using a merging parameter α, to control the contribution of the individual
models. We investigated empirical score-based and rank-based merging
strategies. The score-based model assumes a linear combination of both
respective scores rD-SIM

i and rQ-SIM
i from D-SIM and Q-SIM, in which their

individual contribution is controlled by the hyperparameter α:

rDQ-SIM-score
i (d) = α rD-SIM

i (d) + (1 − α) rQ-SIM
i (d)

The rank-based model combines the distractor ranks ρD-SIM
i and ρQ-SIM

i ∈
{1, 2, 3, ..., N} from D-SIM and Q-SIM into the score

rDQ-SIM-rank
i (d) =

α

log
(
ρD-SIM

i (d) + 1
) +

1 − α

log
(
ρQ-SIM

i (d) + 1
)

This scoring function is based on weighted combination of inverse distractor
rankings, such that high-ranked distractors have more weight. We use
logarithmic smoothing to avoid the potential contribution of low-ranked
distractors from vanishing too rapidly.

2.3.5 Training

We use contrastive learning as our training strategy [57]. Contrastive learn-
ing [46, 58, 59] is a machine learning technique that aims to learn representa-
tions of data by contrasting similar and dissimilar examples. It aims to bring
similar instances closer together in the representation space by maximizing
the similarity between their embeddings, while pushing dissimilar samples
further apart by minimizing their similarity.

In a contrastive learning setting, it is often the case that similar example
pairs (i.e., also called positive examples) are available explicitly in training
datasets, whereas dissimilar or negative examples need to be sampled from
an extremely large pool of instances. For the Q-SIM model, a positive pair
consists of two questions sharing at least one distractor, whereas for the
D-SIM model, we require similar representations for a given (stem, key) item
and a distractor corresponding to the same MCQ.
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As a negative sampling strategy, we use in-batch negatives [60] while
training our models. For D-SIM, the in-batch negatives are gold-standard
positive distractors for the other instances in the same batch. While for
Q-SIM, the in-batch negatives are the positive questions that come from the
other instances in the same batch. Reusing gold standard distractors or
questions from the same batch as negatives makes training more efficient,
compared to randomly sampling negatives for each positive pair in the
batch.

With the notation ri(d) (common in both D-SIM and Q-SIM) for scoring
MCQi against distractor d, and by introducing the sigmoid function σ(r) =
1/(1 + e−r), we can write the contrastive loss [61] Li to be minimized for
MCQi with matching distractors d+ as follows:

Li = −∑
d+

log σ
(
ri(d+)

)
− ∑

d−
log σ

(
− ri(d−)

)
in which ri(d+) denotes the score of a positive distractor for the consid-
ered question, and ri(d−) the scores for the in-batch negatives (summed
over the considered batch of training instances). If the quantity σ

(
ri(d)

)
is

interpreted as the probability that distractor d is compatible with MCQi
(in the sense of model D-SIM or Q-SIM), then minimizing the above loss
term can be understood as maximizing the joint estimated probability of d+

being compatible distractors for MCQi, and the in-batch negatives d− to be
incompatible ones.

2.3.6 Using the models for predictions

This section describes the inference mechanism for our models. Inference
refers to using a trained model to make predictions about new data. For each
of the models, the goal is inducing an ordering of all candidate distractors in
response to a given question stem and answer key, such that the top ranked
ones can be proposed as fitting distractors.

For the D-SIM model, since the considered (stem, key) pair and the
distractor to be scored against it are independently fed to the network,
the embeddings of the pool of distractors can be computed offline. The
vector representation h(sk) of a given stem and its answer key is calculated,
compared through the dot product with each of the pre-calculated distractor
representations h(d), and these are then ordered according to decreasing
score.

Similarly, for the Q-SIM model, the pool of questions’ embeddings is
calculated offline and stored. At run time, for a given question stem s, we
compute its embedding h(s), score it against all pre-calculated stem repre-
sentations for the MCQs in the corpus, and rank the candidate distractors
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according to the decreasing score of their corresponding question stem.
Note that we assign that same score to each of the distractors of a given
stem (for use in DQ-SIM-score). We then rank all distractors according to
decreasing scores (randomly ordering those with identical scores).

Finally, once the scores for D-SIM and Q-SIM are calculated for each
candidate distractor, the DQ-SIM model can be evaluated directly, by ranking
them according to the decreasing score rDQ-SIM-score or rDQ-SIM-rank.

2.4 Experimental Design

This section describes the evaluation methodology and the metrics we
used to measure the quality of the generated distractors using the different
methods described in Section 2.3. Section 2.4.1 introduces our hypotheses
and the experiments we designed to test them. The automatic evaluation
metrics we used are explained in Section 2.4.2.

2.4.1 Evaluation Setup

In order to validate our models’ theoretical effectiveness and practical ap-
plicability, we formulate the following three key hypotheses, which we will
test through experiments based on both automatic and human annotator
evaluation:

• Hypothesis 1: Context-aware models, based on generic pre-trained lan-
guage models, lead to more effective distractor selection models than shal-
low prediction models based on manually engineered features.

• Hypothesis 2: Manual distractor quality scores are correlated with machine-
generated distractor candidate rankings.

• Hypothesis 3: Top-ranked machine-proposed distractor candidates are com-
parable in quality to expert-generated distractors, for a given question stem
and answer key.

For Hypothesis 1, we first of all set up a large-scale automatic evaluation
experiment with the Televic dataset (see Table 2.1). In addition, a focused
small-scale automatic evaluation of context-aware and feature-based models
was carried out on the WeZooz external data (see Section 2.3.2.2 for details)
that contains several subjects.

We complemented that automatic evaluation with human evaluation,
since hard comparison of ground-truth distractors with machine-generated
distractors may not give the whole picture of accuracy. Indeed, both for
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language learning and factual knowledge learning, MCQs can have a po-
tentially large set of viable distractors that are not included by the gold
standard distractor set. Thus, automated metrics could flag a correctly
proposed candidate distractor as wrong because of the scarcity of the gold
standard dataset. To avert this problem, many previous works asked human
experts to judge the quality of the distractors that were generated by their
systems [62, 63]. Hence, we also invited teachers to provide their expert
opinion, each focusing solely on a set of questions on their own subject
of expertise. In the following paragraphs, we explain the procedure we
followed to set up that expert evaluation, which we will use in assessing all
aforementioned Hypotheses 1–3.

First, we prepared a small sample of test questions for language and
factual knowledge learning. For language learning, we used French and
English. These questions were randomly drawn from the held-out test split
of the Televic dataset introduced in Section 2.3.2.1. For the factoid type
questions, we use the WeZooz dataset introduced in Section 2.3.2.2. Each
of the subjects contains a fixed list of 50 questions. Second, we applied the
different trained models to rank distractors according to their relevance
for each question in the test set. We then kept the top-10 ranked candidate
distractors for each of the models. Finally, teachers were shown distractor
predictions unified over all models (i.e., duplicates were removed) as well as
the provided gold-truth distractors for each test question (see the illustration
provided in Fig. 2.4 in Appendix 2.C). Note that the order of the unified list
of distractors was randomized, to avoid introducing order bias.

The teacher participants were explicitly instructed to rate each candi-
date distractor based on how much they thought it would help them if
they were given the task of preparing distractors for that specific question.
Specifically, we asked them to annotate each distractor independently of
the other distractors in the list, based on a four-level annotation scheme
that we designed to measure the quality of distractors. Our scale is closely
related to the three-point evaluation scale proposed by [63] (Table 2.3 shows
examples of each category):

• True Answer: specifies that the distractor partially or completely over-
laps with the answer key.

• Good distractor: specifies that the distractor is viable and could be used
in an MCQ as is.

• Poor distractor: specifies that the distractor is on topic but could easily
be ruled out by students. This could happen due to one or both of the
following reasons.
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– Poor meaning: the distractor has poor meaning. For example, it is
too general, although not completely off-topic.

– Poor format: the distractor’s format is different from the format
of the answer key and does not fit with the stem.

• Nonsense distractor: specifies that the proposed distractor is completely
out of context.

Although the third category (i.e., poor distractor) implies that the pro-
posed distractor is ineffective as is, a minor tweak may result in a useful
distractor. Furthermore, even if a significant change is required, it may
inspire teachers to create new effective distractors.

Using the annotations we gathered from the teachers, we tested Hy-
potheses 2 and 3. For Hypothesis 2, we evaluated whether the higher ranked
distractors also have a higher perceived usefulness. This was done by
comparing the human scoring of distractor candidates in the top-5 to that
of those ranked 5–10: for a good distractor generation model, the top-5
should on average contain significantly more ‘good’ ones. We designed a
statistical analysis to test the null hypothesis that the rating distribution is
not related to whether candidate distractors were ranked top-5 or 5–10. We
used Fisher’s exact test8 to test this hypothesis.

For Hypothesis 3, we evaluated the extent to which the teachers perceived
the system-generated distractor candidates as the ground-truth distractors.
Again, we use Fisher’s exact test to test the null hypothesis that the distrib-
ution of quality of distractors is not related to whether the distractors are
human-generated or system-generated.

2.4.2 Automated Metrics

We use two groups of information retrieval metrics to automatically eval-
uate our systems: (1) Order-unaware metrics: Recall@k and Precision@k,
which measure the fraction of gold-standard distractors that are in the top-k
distractors and the fraction of relevant distractors in the top-k retrieved
distractors, respectively. (2) Order aware metrics: mean reciprocal rank
(MRR) and mean average precision (MAP), which respectively reflect how
high the most relevant item is ranked in the list, and how high all relevant
ones are ranked on average.

8We also conducted a chi-square test and reached the same conclusions.
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Table 2.3: Annotation scheme examples

Question Answer Distractors Category Moderation

Which inhabitants
are not happy with
Ethiopia’s plans of
the Nile?

Egyptians

1. Itali Poor format because
of wrong
spelling.

2. Kenyans Good -
3. gypsies Poor meaning because

My mum brought
the washing in .... it
was raining.

because
1. until Good -
2. since True Answer
3. investigate Nonsense out of context

How old was
Beethoven when he
died?

56 years

1. 1.5v Nonsense out of context
2. 60 years Good -
3. 180 years Poor meaning humans can-

not live 180
years.

2.5 Results and Discussion

In this section, we provide evidence of the effectiveness of our context-
aware models by reporting the experimental results and discussing the
insights gained. Section 2.5.1 compares the baseline with our proposed
context-aware models using reproducible automated metrics (Hypothesis 1).
Section 2.5.2 discusses the user study results with experts (Hypotheses 1–3).
Note that all the numerical results reported in this section are in percentage
points.

2.5.1 Automatic Evaluation

When considering the results of our automated evaluation based on the
recovery of ground-truth distractors, it is essential to note that information
about ground-truth distractors for a given item was never used during
the model’s training. Table 2.4 shows the large-scale evaluation of the
systems on the Televic test set. We report our results as the mean and
standard deviation of five different runs of our models using five random
seeds as shown in Table 2.4. All three context-aware models consistently
outperform our feature based model (denoted ‘baseline’) on all metrics.
DQ-SIM performs the best according to most metrics, confirming that Q-
SIM and D-SIM have their own (complementary) merits. Q-SIM is better
than D-SIM at recovering ground truth distractors (i.e., Recall@10 of 82.3
compared to 76.0), but inferior at ranking the best relevant distractor at
the top in the list, which we conclude from the lower Precision@1 (40.4
vs. 44.9) and MRR (55.6 vs. 60.7) scores. This is related to the nature of
the Q-SIM model. The candidate distractors belonging to its best matching
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question would be put at the top of the returned distractors in a random
order. Our results show that D-SIM is better at estimating the most likely
distractor than Q-SIM is in finding a relevant question and arriving with the
relevant distractor on top after random ordering. However, the Precision@4
results show that Q-SIM has more success in identifying a question with
good distractors, than D-SIM has in detecting good distractors among its
top 4 results. The other reported metrics (Recall@10, Precision@4, MAP)
indicate the overall higher effectiveness of Q-SIM when looking further than
only the top result. In our MCQ generation setting, recall within the top
10 results is the more important metric, since the presence of high quality
distractors in the automatically generated list is more important than their
correct ranking.

Table 2.4: Automatic ranking evaluation Full-ranking

Models R@10 P@1 P@4 MAP MRR

Baseline 71.3±1.2 21.1±1.8 23.7±0.5 33.5±1.0 43.9±1.9

D-SIM 76.0±0.7 44.9±0.5 24.4±0.8 44.9±0.6 60.7±1.3

Q-SIM 82.3±0.5 40.4±1.5 35.9±0.9 54.9±0.9 55.6±1.1

DQ-SIM 91.7±0.6 41.9±0.8 38.2±0.7 57.3±0.5 62.8±0.4

R:recall, P: precision, MAP: mean avg. precision,
MRR: mean reciprocal rank; evaluation on Televic test set.

Figure 2.3 depicts the performance of DQ-SIM for the two merging strate-
gies, in terms of Recall@10 on the validation set described in Section 2.3.4.3.
The linear combination of the scores outperforms the rank-based merging
strategy. The score-based strategy achieves the best performance at α = 0.8,
giving more weight to the Q-SIM model. This is reasonable given that the
Q-SIM model outperforms the D-SIM model on the recall metric.

Table 2.5 compares the baseline with DQ-SIM (i.e., the best context-aware
model according to the evaluation on the Televic dataset) in a small-scale
setting for all four Wezooz dataset subjects as well as English and French
from the Televic test set. Since we want to compare models in terms of their
ability to rank relevant distractors higher in the list, we added the ground-
truth distractors from all the subjects to the existing distractors pool. Ideally,
the best model would rank all the ground-truth distractors high in the list.
Similar to the large-scale evaluation, DQ-SIM consistently outperforms the
baseline for all subjects on both metrics. Recall@10 and MAP are higher for
the language category than for factoid questions because the test questions
for the former come from the same distribution (i.e., Televic test questions)
as the data the models were trained on (i.e., Televic train set). On the
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Figure 2.3: Different α values for combining Q-SIM and D-SIM models using rank
and raw scores on the validation set

other hand, the test data for the factoids come from a different distribution
(i.e., WeZooz dataset) than the training data such that the evaluation for
these subjects additionally measures the robustness of the model to a data
distribution shift (i.e., its domain transfer abilities). The DQ-SIM model is
far more robust than the baseline.

Table 2.5: Small scale Automatic ranking evaluation

Models Baseline DQ-SIM

R@10 MAP R@10 MAP

English* 60.1 33.6 98.3 85.8
French* 46.6 17.7 81.1 61.1

Nat. Sciences 24.3 7.7 74.3 37.3
History 14.3 3.4 62.2 35.7
Biology 30.6 7.6 72.0 41.8
Geography 32.3 12.1 61.5 34.4

R: recall, MAP: mean avg. precision; * denotes subject
is drawn from the Televic test set, while the rest are from WeZooz.
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Table 2.6: Inter-annotation agreement of ground-truth distractors (%)

True Ans. Good Poor Nonsense

Languages 5 70 14 11
Factoids 2 83 9 6

Overall 3 79 11 7

2.5.2 Expert Evaluation

Following the procedure introduced in Section 2.4, a total of 12,723 ratings
for distractor quality were gathered from the annotations by teachers (see
Table 2.9 for details of rating statistics). These ratings come from the top-10
ranked distractors for each of the four models, and the ground-truth distrac-
tors (i.e., all simultaneously presented and randomly shuffled). We retained
the gold standard distractors in the lists to be annotated, because we wanted
to investigate the agreement among teachers in creating distractors. In the
following subsections, we study teachers’ (dis)agreement on the quality of
distractors, compare the various models using the evaluation from experts,
and revisit Hypotheses 1–3 in light of these results.

2.5.2.1 Inter-annotator agreement

We adopt 2 strategies to assess inter-annotator agreement. First, we analyze
how teachers rated the ground-truth distractors, which were made by other
teachers who prepared the questions. As can be seen from Table 2.6, in
general, we find that 79% of the actual distractors were deemed good, 11%
poor, followed by 7% nonsense and 3% true answers. There is greater
agreement between teachers in what is considered a good distractor on the
factoids than for language learning exercises (83% vs. 70%).

Second, we study the agreement of teachers by asking them to rate the
same set of distractors using our four-level scale annotation scheme. We
selected the subjects English, from the languages category, and History, from
factoids, for annotations by at least two teachers. Table 2.7 shows the inter-
annotator agreement of teachers using the Jaccard similarity coefficient.
The Jaccard similarity measures similarity between two sets of data by
calculating what fraction of the union of those datasets is covered by their
intersection. In our case, it is calculated as the number of times the teachers
agreed on a distractor category label (i.e., one of the four quality labels)
divided by the total number of distractors that were annotated (by either
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Table 2.7: Inter-annotation agreement of experts in terms of Jaccard similarity coeffi-
cent (%)

Subjects True Good Poor Nonsense Overall

English 25.8 42.9 12.8 40.0 47.9
History 0.0 43.6 24.3 59.7 57.7

annotator) with that label. In general, we note a higher agreement on what
is considered a good distractor and a nonsense distractor. Particularly, the
overall agreement between the History teachers is higher than the English
teachers. This is in line with the higher agreement for factoid type questions
discussed in the previous paragraph. The Jaccard similarity is sensitive to
small sample sizes. For example, a total of only two distractors were rated
‘true answer’ by the history teachers which yielded no similarity (i.e., a ‘0’
in the first column in Table 2.7).

Calculating the inter-annotator agreement with the commonly used
Cohen’s kappa [64] value, we confirm aforementioned higher agreement
for factoid questions than for language: Cohen’s kappa is 29.3 among Eng-
lish teachers, which represents “fair agreement”, and 40.5 among History
teachers, indicating “moderate agreement”.

As a final metric to assess potential ambiguity in scoring distractors,
we calculate conditional probabilities P(X|Y) of having a second annotator
assigning label X given that a first one said Y. For example, unsurprisingly,
the probability of rating a distractor ‘good’ given that it was rated ‘nonsense’
by another teacher and vice-versa was 6% for English and 5% for History.
This implies that the confusion in differentiating good distractors from
nonsense distractors was minimal. Details are presented in Table 2.12 in
Appendix 2.D.

2.5.2.2 Evaluation of models by experts

Table 2.8 shows the expert evaluation of distractors in terms of good distractor
rate (GDR@10) and nonsense distractor rate (NDR@10). GDR@10 is calculated
as the percentage of distractors that were rated ‘good’ among the top 10
ranked distractors for each model. Similarly, NDR@10 is calculated as
the percentage of distractors that were rated ‘nonsense’ among the top
10 ranked distractors for each model. We are interested in reporting the
NDR metric because (i) it could be used to distinguish between good and
bad systems, and (ii) in a real-world scenario discarding a system with
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Table 2.8: Expert evaluation of distractors (%)

Models Language learning Factoid learning

GDR@10 ↑ NDR@10 ↓ GDR@10 ↑ NDR@10 ↓
Baseline 23.6 45.4 13.6 66.0
D-SIM 25.9 45.2 15.0 64.8
Q-SIM 26.3 45.3 19.0 61.6
DQ-SIM 27.9 44.6 28.9 50.1

GDR: good distractor rate, NDR: nonsense distractor rate;
↑: higher is better, ↓: lower is better; evaluation on WeZooz test set

high NDR score could be helpful since the frequent occurrence of nonsense
distractors may scare away users by eroding their trust in the model. The
reported metrics are averages of all the subjects in each category. ↑ indicates
larger values are better and ↓ indicates smaller values are better. In general,
context-aware models were rated better in proposing plausible distractors
than the baseline model. They also produced fewer nonsense distractors.
The DQ-SIM outperformed all the other models. On average, 3 out of its
top 10 proposed distractors were rated good distractors. Moreover, on
average 5.5 distractors for languages and 5 for factoids were generally
found on-topic (i.e., distractors rated as either good or poor distractors) for
DQ-SIM.

The NDR@10 is lower for all models for language subjects than for fac-
toid questions. We hypothesize this is because the test data for the language
category comes from the same distribution the models were trained on.

2.5.2.3 Discussion of key hypotheses

We now discuss to what extent our experimental results confirm our afore-
mentioned key Hypotheses 1–3.

Hypothesis 1 states that the context-aware models generate better qual-
ity distractors than the feature-based models. As discussed in Section 2.5.1,
the automated evaluation shows that the context-aware models consistently
outperform the feature-based model on the Televic and WeZooz datasets.
The human evaluation in Section 2.5.2.2 further confirms this by demonstrat-
ing that distractors generated by context-aware models were rated higher
in quality than those generated by feature-based models.

Hypothesis 2 states that human distractor quality ratings are correlated
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with the automated candidate distractor rankings. To test this hypothesis,
we collapsed the four ratings into two categories: plausible (i.e., rated as good
distractors) and less plausible (i.e., rated as true answer, bad and nonsense
distractors). Table 2.10 in Appendix 2.D shows the contingency table for
Fisher’s exact test for our best model, i.e., DQ-SIM. The fraction of top-5
ranked distractors that received ‘good distractor’ ratings (i.e., 30.3%) is
higher than that for the ones ranked 5–10 (i.e., 21.6%). We found that this
difference is statistically significant. Indeed, the null hypothesis that the
automatic ranking of distractors is unrelated to how teachers rated them is
strongly rejected (p =1.7e-8).

Hypothesis 3 asserts that the quality of top-ranked machine-generated
distractors is comparable with human-made distractors. To test this, we
compare the distribution of ratings of the ground-truth distractors (i.e.,
expert-generated distractors) with the distribution of ratings for the DQ-SIM

model (i.e., system-generated distractors). As for Hypothesis 2, we collapse
the ratings into plausible and less plausible classes. Table 2.11 in Appen-
dix 2.D shows the contingency table for Fisher’s exact test, to compare the
quality between system-generated and human-generated distractors. The
null hypothesis that the source of the distractor (i.e., human-generated or
system-generated) is unrelated to the quality label assigned by the teachers,
is strongly rejected (p <1.e-10). Indeed, the quality of the human-generated
distractors was found to be better than the system-proposed distractors.
Still, we believe system-generated distractors have value: given that they
can be generated quickly and automatically, presenting them as suggestions
— rather than relying on a fully automated system — seems a practically
meaningful way of working, which could save teachers a significant amount
of time (compared to purely creating a list of distractors without any assis-
tance).

2.6 Conclusion and Future Work

This paper introduced and evaluated multilingual context-aware distractor
retrieval models for reusing distractor candidates that can facilitate the task
of MCQ creation. Particularly, we proposed three models: (1) The D-SIM

model that learns similar contextual representations for similar distractors,
(2) The Q-SIM model that requires similar questions to have similar repre-
sentations, and (3) The DQ-SIM model that linearly combines the previous
two models benefiting from their respective strengths. Importantly, the
DQ-SIM model showed a considerably reduced nonsense distractor rate,
which we consider a useful asset in terms of trust in the model by teach-
ers. We also asked teachers to evaluate the quality of distractors using a
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four-level annotation scheme that we introduced. As the result, teachers
considered 3 out of 10 suggested distractors as high-quality, to be readily
used. Additionally, they found two more distractors to be within topic,
albeit of lower quality, and useful as inspiration for teachers to come up
with their own good distractors. Finally, we released a test consisting of 298
educational MCQs with annotated distractors covering six subjects and a
77K distractor vocabulary to promote further research.

In future work, we foresee three directions. First, it is worth reiterating
that the current work assumes access to a substantial pool of distractors.
Even though with such large item pools, it is expected that many options are
available for an incoming newly written question, the current work is unable
to generate a brand new distractor. A possible solution could be to employ
pure generative models that can freely generate distractors. Moreover,
generative models could correct the ‘poor format’ errors. However, it
has to be noted that such models require access to a context where the
distractors and questions come from, such as a chapter of a book, Wikipedia
article, etc. A second research direction is to extend the current work to
a multimodal system that considers other sources of information, e.g.,
images that accompany MCQs in digital learning tools. Finally, an area
that we are currently investigating is how to make sure the complete list of
distractors in a single MCQ is sufficiently diverse: note that in the present
study, we were only interested in retrieving a list of plausible distractors
independent of each other. However, typical MCQ distractors should not
only be plausible but also sufficiently diverse.
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2.7 Appendix

2.A Training and Implementation details

• Feature-based models: for feature extraction and model training we
use components from the scikit-learn package for python [65]. As
negative training examples, we sample a total of 100 non-distractors
for each MCQ.

• Context-aware models: our transformer based model is implemented
using Pytorch [66] and Huggingface [67]. We initialize our encoder
with bert-base-multilingual-uncased. We fine-tune the last two lay-
ers and leave the other layers frozen. The most important hyper-
parameters are the learning rate, batch size, the duration of training,
and the output width of our dense layer. To avoid extensive hyper-
parameter tuning, we made the following choices. First, we choose
the output dimension of the dense layer to be dout = 700 because we
empirically found that it yielded good results. For the learning rate,
we kept the choice of 10−5 from Karpukhin et al. [60] in combination
with the robust Adam optimizer [68]. Also in line with [60], we know
increasing batch size may lead to slightly improved results, and thus
decided the batch size to be 64, the highest value that would fit our
V100 memory. We train each model for 25 epochs at which point
performance on the development begins to plateau due to overfitting.

2.B Feature Vector Description

We describe each feature we used to build our feature-based classifiers in
below.

1. tfidf_word_match_share : a word overlap metric between both k & d and s & d which
weighs overlapping words according to their inverse document frequency value.
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2. word_match_share: fraction of word tokens that are shared between both k & d and s
& d.

3. equal_num : boolean feature that checks whether k & d have equal numbers of digits.

4. longest_substring : fraction of longest matching sub-string between k and d.

5. token_len_sim : boolean feature that checks if the amount of tokens in k is equal with
d.

6. token_len_diff : difference in amount of tokens in k and d.

7. char_len_sim : boolean feature that checks if the amount of characters in k is equal
with d.

8. char_len_diff : difference in amount of tokens in k and d.

9. is_caps : boolean feature that checks if both k and d are capitalized.

10. count_caps : boolean feature that checks if both k and d have the same number of
upper cased characters.

11. has_num : boolean feature that checks if the strings k and d have numbers.

12. get_count : absolute number of occurrences of d in our dataset.

13. first_char_match : boolean feature that checks if both k and d start with the same
5-gram characters.

14. last_char_match : boolean feature that checks if both k and d end with the same
5-gram characters.

15. w2v_ad_sim : a numeric feature that calculates the cosine similarity between the
answer key and distractor using their word2vec representations.

16. wmd_w2v_qd : word mover’s distance between the question and distractor using
their word2vec vector representations.

17. wmd_w2v_ad : word mover’s distance between the answer and distractor using their
word2vec vector representations.

18. glove_ad_sim : the cosine similarity between the answer and distractor using their
averaged glove embeddings.

19. wmd_glove_ad : the word mover’s distance between the answer and distractor using
their averaged glove embeddings.

20. lang_prior : the prior distribution of the source language of the question.

2.C Annotation Platform

Figure 2.4 shows the annotation tool that we built for the quality annotation
task by teachers. Each page presents a question, its actual answers, and
a randomly shuffled list of candidate distractors that are proposed by the
different models. Teachers assign quality labels to each of these proposed
distractors by selecting one of the four radio-button options. If the teacher
selects poor distractor as a label for a distractor, then a drop-down menu with
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two more options (i.e., poor format and poor meaning) is shown. Finally, the
annotator/teacher can go to the following question by pressing the ‘Next’
button displayed at the left bottom of the screenshot.

Figure 2.4: Screenshot of the distractor annotation tool. The teacher is shown a
question, an answer, and a shuffled list of ground-truth distractors &
candidate distractor suggestions by all the models.

2.D User study details

This section contains the user study details. Table 2.9 describes the data
gathered from the annotations provided by the teachers. Every subject
has 50 questions except English, which had two duplicates that were later
removed, leaving only 48 questions. On average, there are 2 distractors
for each question item. We collected 1090 annotations for the original
ground-truth distractor, and 11,633 annotations for the proposed candidate
distractors (i.e., top ten ranked distractors by each of the four models). A
total of 8 teachers participated in the study. English (i.e., from languages)
and History (i.e., from factoids) were annotated twice by two different
teachers for the purposes of calculating interannotator agreement.

Table 2.10 shows the contingency table for hypothesis 2 that tests the
correlation between automated distractor rankings (i.e., using our best
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Table 2.9: Ratings Data Description

Subjects Item count Dist. count Ratings count No of Raters
Original dist Proposed dist Gold dist Proposed dist

English 48 130 723 260 1882 2
French 50 92 1148 92 1650 1
Geography 50 145 966 290 1960 1
History 50 130 1335 260 2420 2
Biology 50 88 1266 88 1761 1
Nat. Sciences 50 100 1407 100 1960 1

Total 298 685 6845 1090 11633 8

Table 2.10: Contingency table for automatic ranking & human rating correlation
using DQ-SIM

Plausible Less plausible

Ranked top 5 425 977
Ranked 5–10 303 1097

model DQ-SIM) and human ratings using Fisher’s exact test. The plausible
column contains the count of distractors that were rated ‘good’ and the
less plausible column the count of all distractors that were rated otherwise
(i.e., ‘poor’, ‘true answer’ and ‘nonsense’ distractors). The rows indicate the
count of top-5 ranked distractors and the 5–10 ranked distractors.

Table 2.11: Contingency table for comparing human & system generated distractors

Plausible Less plausible

Human-generated 511 156
System-generated 255 412

Table 2.11 shows the contingency table for testing hypothesis 3 that com-
pares the quality of human-generated with system-generated distractors.
We use Fisher’s exact test to test the hypothesis. The table shows counts of
ratings in each category. For the human-generated row, we keep track of
how each ground-truth distractor was rated, and update the counts depend-
ing on whether the distractors were rated ‘good’ (i.e., plausible) or the other
labels (i.e., less plausible). Similarly, for the system-generated row, we count
the ratings of top-k proposed distractors and update the counts in each
column accordingly, where k is determined by the number of ground-truth
distractors for that specific question.



DISTRACTOR RANKING 59

Table 2.12: Conditional probabilities between raters (average of both directions)

Sub. gd | tr gd | p f gd | pm gd | ns p f | ns pm | ns

Eng. 35% 19% 44% 6% 11% 14%
His. 50% 22% 34% 5% 12% 6%

Table 2.12 illustrates the confusion observed between teachers in choos-
ing which label to assign to a distractor. We show the confusion using
conditional probabilities computed over both directions of the raters, where
gd, tr, p f , pm, and ns denote good, true answer, poor format, poor meaning
and nonsense distractors respectively. For example, the first column (i.e.,
P(gd | tr) ) shows the probability of rating a distractor ‘good’ given that it
was rated ‘true answer’ by the other rater.
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3
Leveraging Large Language Models

for Distractor Generation

In this chapter, we study how large language models could be leveraged for the task
of distractor generation in educational multiple-choice questions. We propose a
novel strategy for guiding LLMs in generating plausible distractors by prompting
them with question items automatically retrieved using local models introduced in
Chapter 2 from question banks. These retrieved question items serve as well-chosen
in-context examples. We combine the original question (i.e., to generate distractor
for) with these examples into a prompt to the LLM. We show that our strategy leads
to performance gains in terms of generating high quality distractors.

⋆ ⋆ ⋆

Distractor generation for multiple-choice questions with pre-
dictive prompting and large language models

S.K. Bitew, J. Deleu, C. Develder and T. Demeester

In Proceedings of the First Workshop on Responsible Knowledge Discov-
ery in Education (RKDE) at ECML-PKDD 2023.

Abstract Large Language Models (LLMs) such as ChatGPT have demon-
strated remarkable performance across various tasks and have garnered
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significant attention from both researchers and practitioners. However, in
an educational context, we still observe a performance gap in generating
distractors — i.e., plausible yet incorrect answers — with LLMs for multiple-
choice questions (MCQs). In this study, we propose a strategy for guiding
LLMs such as ChatGPT, in generating relevant distractors by prompting
them with question items automatically retrieved from a question bank as
well-chosen in-context examples. We evaluate our LLM-based solutions
using a quantitative assessment on an existing test set, as well as through
quality annotations by human experts, i.e., teachers. We found that on
average 53% of the generated distractors presented to the teachers were
rated as high-quality, i.e., suitable for immediate use as is, outperforming
the state-of-the-art model. We also show the gains of our approach1 in gen-
erating high-quality distractors by comparing it with a zero-shot ChatGPT
and a few-shot ChatGPT prompted with static examples.

Keywords Distractor generation, natural language processing , large lan-
guage models , predictive prompting , language learning , neural networks.

3.1 Introduction

The rapid advancement in artificial intelligence (AI) and large language
models (LLMs) have paved the way for transformative applications across
various domains, including the education domain. Since several LLMs (e.g.,
GPT-3 [1], InstructGPT [2], GPT-4 [3]) have been pretrained on massive
amounts of data across multiple domains and languages, they are capa-
ble of solving natural language processing (NLP) tasks with little training
examples (i.e., few-shot learning) or no additional training (i.e., zero-shot
learning). This opens up new opportunities for adopting LLMs in the devel-
opment of many educational technological solutions that aim to automate
time-consuming and laborious educational tasks such as generating ques-
tions [4] and exercises [5], essay scoring [6], and automated feedback [7].

In particular, the recent release of ChatGPT, an LLMs-based generative
AI model that requires only natural language prompts without additional
model training or fine-tuning, has demonstrated diverse potential in au-
tomating various educational tasks. For example, ChatGPT has achieved
the equivalent of a passing score for a third-year medical student (above
60%) in the United States Medical Licence Examination (USMLE) Step 1
exam, and provided logical justification and informational context across
the majority of answers [8]. Likewise, ChatGPT’s performance on four real

1https://github.com/semerekiros/distractGPT/

https://github.com/semerekiros/distractGPT/
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exams (containing 95 MCQs and 12 essay writing questions), at the Univer-
sity of Minnesota Law School was equivalent to C+ students implying a
pass in the course [9]. Li et al. [10] show the capability of ChatGPT in gener-
ating high-quality reflective responses in writing assignments administered
for pharmacy courses.

One important educational task is the generation of multiple-choice
questions (MCQs). MCQs have long been a popular form of formative
and summative assessment in education due to their automatic scoring
capability and the potential they hold for delivering timely and targeted
feedback, which is crucial for facilitating effective learning [11]. However,
the process of crafting high-quality MCQs with effective distractors (i.e.,
plausible yet incorrect answers) has traditionally been both a challenging
and time-consuming task for educators (e.g., teachers, content creators etc. )
as poorly prepared distractors undermine the quality of MCQs [12]. This
is where LLMs offer substantial benefits as they can be leveraged to auto-
mate the MCQ construction process, thus saving educators’ time and effort
while maintaining the quality and validity of the assessment items. For
instance, teachers could employ LLMs to not only create different variants
of the same MCQ questions but also develop different MCQs of comparable
difficulty levels, facilitating targeted assessment for students with similar
proficiency levels. Furthermore, students can benefit from the availability
of several MCQs, enabling them to engage in regular practice, which is a
well-established and highly effective learning strategy [13]. Additionally,
such models could be used for large-scale testing contexts (e.g., licensure
and certification testing) in which it is necessary to have multiple forms of
a test and to introduce new question items regularly to minimize security
concerns related to item exposure.

In a recent study [14] conducted around the same time as the release of
ChatGPT, researchers used local language models to automatically retrieve
and reuse distractors to create new MCQs for education by leveraging exist-
ing pools of question items. In a user study they conducted with teachers, 3
out of 10 distractors proposed by their system were found to be high-quality,
which is generally sufficient for creating an MCQ, as an average MCQ typ-
ically contains 3 distractors. However, they also report a staggering 50%
production of distractors that were entirely out of context given a question
(so-called “nonsense distractors”). With the emergence of ChatGPT, the
question arises: does this previous approach become obsolete? In our current
study, we aim to address this question by examining the ability of out-of-
the-box ChatGPT to generate effective distractors to be measured on the
same scale as the previous study and evaluated by experts. Moreover, we
study how both approaches could be combined into an even more effective
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approach. We also delve into the reliability issue, specifically in decreasing
the production of nonsense distractors, which has implications for teach-
ers’ trust in the distractor generation tools. To guide our investigation, we
formulate the following research questions (RQs):

1. RQ1: In comparison to ranking-based models, does ChatGPT generate
high-quality distractors for educational MCQs?

2. RQ2: To what extent can we rely on ChatGPT-generated distractors,
and how can we measure their trustworthiness?

3. RQ3: Is it possible to enhance the capability of distractor generation
by combining ranking-based models with LLMs?

To answer the RQs, we designed ChatGPT prompting strategies and
we solicited feedback from human experts, i.e., teachers, to evaluate the
quality of generated distractors. We also compared the different strategies
in terms of the reliability of generating less nonsensical distractors. In gen-
eral, we found ChatGPT-driven solutions produced high-quality distractors
compared to ranking-based models. They are also more reliable than the
ranking-based model as they produce significantly less number of nonsense
distractors. We also combined the rank-based approach with ChatGPT,
through the automatic composition of an example-based prompt from the
output of the rank-based model. We found that this leads to a more reliable
and effective generation of distractors. The contribution of this paper can
be summarized as follows:

• We proposed a strategy to guide LLMs, specifically ChatGPT, to gener-
ate effective distractors for MCQs across various subjects by prompt-
ing the model with question items automatically retrieved from exist-
ing question banks.

• We performed a user study with teachers to evaluate the quality of
distractors proposed by our strategy.

• The evaluation of our approach unveils its dual capability to generate
valuable distractors while simultaneously minimizing the occurrence
of nonsensical options.

The remainder of the paper is organized as follows: Section 3.2 describes
the relevant work in distractor generation and LLM prompting strategies.
Section 3.3 explains the details of the baselines and the proposed method,
while Section 3.4 introduces the test dataset and the evaluation setup of
the user study with teachers. In Section 3.5.2, we report the results and
provide some insights. Finally, in Section 3.6, we present the conclusion by
summarizing the key findings and implications of our study.
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3.2 Related Work

Since we briefly covered the broad application of LLMs in education in
the introduction, in this section we only focus on describing prior works
on distractor generation (Section 3.2.1) and discussing LLMs’ prompting
strategies (Section 3.2.2) and their relevance to our work.

3.2.1 Distractor Generation

We focus on generating incorrect options (i.e., distractors) for multiple-
choice questions (MCQs), which is a time-consuming task that impacts
MCQ quality and has been extensively researched. Broadly speaking, the
main methods for generating distractors can be categorized into retrieval-
based and generation-based techniques.

Retrieval-based methods generate distractors by selecting the most similar
alternative answers in existing knowledge bases or question item corpora.
To approximate the similarity between distractors and the answer key (and
question stem), several approaches are used based on (i) embedding space
proximity [14–16], (ii) similarity in lexical databases such as WordNet [17],
which is of particular importance in language and vocabulary learning [18,
19], and (iii) the semantic distance within domain-specific ontologies, which
is critical in factoid-type questions [20–23]. This ultimately leads to the
selection of candidate distractors based on a ranking strategy [24].

Generation-based methods make use of deep learning models to directly
generate distractors. Pioneering research [25–27] demonstrated the feasi-
bility of using sequence-to-sequence models to generate distractors, while
more recently, solutions based on BERT [28, 29] or T5 [30] have been ex-
plored. Rather than directly (auto-regressively) generate a distractor, the
technique of back translation has shown to be relatively effective (beating a
BERT-based baseline) for fill-in-the-blank language assessment tests [31].

In this work, we investigate the potential of ChatGPT2, a large and au-
toregressive language model, in creating distractors. We aim to combine
retrieval-based and generative-based approaches by (i) automatically re-
trieving similar question items from pre-existing question banks to compose
an example prompt and (ii) using this example prompt to guide ChatGPT
to generate relevant distractors.

3.2.2 Prompting strategies

Recent instruction-based large language models (LLMs) have been a game-
changer for various tasks, showing remarkable performance without any

2https://chat.openai.com/

https://chat.openai.com/
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task-specific training (e.g., through finetuning) of the LLM [1, 32]. A spe-
cific task is solved through phrasing an instruction (zero-shot), possibly
including a few input/output examples (few-shot) for the task at hand,
as the so-called prompt that serves as input to the LLM. The few-shot
setting, including some examples, is commonly referred to as in-context
learning (ICL). Another prompting strategy, chain-of-thought, induces lan-
guage models to generate intermediate steps before predicting the final
response [33].

In this paper, we introduce a variant of ICL wherein the examples pre-
sented to the LLM are determined dynamically, based on the test example
(i.e., the question to generate distractors for, in our case).

3.3 Methods

We now describe our finetuned T5-based model (Section 3.3.1), and out-of-
the-box ChatGPT-based solutions in a zero-shot setting (Section 3.3.2), as
well as using in-context learning (Section 3.3.3).

3.3.1 T5-based Distractor Generation

We fine-tuned a multilingual T5 (mT5) model [34] to generate distractors.
To this end, we use a private dataset (i.e., the Televic dataset from [14])
of 62K multiple-choice question items in the form of triplets comprising a
question, answer and distractors. These question items are diverse in terms
of language, domain, subject and question type. On average, a question item
has more than 2 distractors and contains exactly one answer. Additionally,
the distractors in the dataset are not limited to single-word distractors.

Following the unsupervised pre-training objective used in the mT5
model, we rearranged our fine-tuning data into input and output sequences
as illustrated in Fig. 3.1. Our mT5 model’s input sequence is constructed
by copying the question stem and answer from the original question item
and inserting the sentence “Which of the following are incorrect answers” (or its
translation depending on the language of the question item) between them.
Furthermore, we masked each distractor (i.e., distractors could be multi-
word spans) in the question item using a sentinel token3 and separated
them by increasing item numbers. The target sequence corresponds to all
the dropped-out distractors and the objective is to predict the distractors.

The fine-tuning configuration that we have devised is intended to sim-
plify the generation of multiple distractors. Specifically, all the necessary

3Each sentinel token is assigned a token ID that is unique to the sequence. The sentinel IDs
are special tokens added to the model’s vocabulary and do not correspond to any wordpiece
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Original text

Inputs

Targets

What is the capital of Belgium?
 A. Brussels  B. Ghent  C. Antwerp   D. Amsterdam

What is the capital of Belgium? </s> Which of the 
following are incorrect answers? </s>
1. Brussels  2. <Mask1>  3. <Mask2>  4. <Mask3>

  <Mask1> 2. Ghent 3. Antwerp 4. Amsterdam

Figure 3.1: Schematic of our fine-tuning procedure. The input sequence is con-
structed by copying the question and the answer from the original text
and adding the template sentence “Which of the following are incorrect
answers”. Each distractor is masked with a unique sentinel token (shown
as ⟨Maskx⟩). The output sequence then consists of the dropped-out dis-
tractors. Note that a single sentinel token replaces all consecutive spans
of dropped-out tokens, and the template sentence is translated into the
language of the question item (i.e., Dutch or French).

distractors for each question are generated as a list separated by numbers
in a single decoding step.

3.3.2 Zero-shot ChatGPT

To use ChatGPT in a zero-shot setting (Zero-ChatGPT), we construct a
prompt that concatenates a fixed instruction sentence and the test example,
as shown in Fig. 3.2. Note that each time a new query is made to ChatGPT,
we clear conversations to avoid the influence of previous samples through
independent API calls. We use a Python ChatGPT wrapper4 to call the
ChatGPT API automatically.

3.3.3 Demonstration-based ChatGPT

Finally, we evaluate ChatGPT in a few-shot setting by probing it with
smartly chosen demonstrations (Dynamic-Demo-ChatGPT). We propose to
retrieve the most relevant question items from the Televic dataset (see
Section 3.3.1) and use them as demonstrations for a given test instance.
We accomplish this by leveraging the question similarity (Q-SIM) model
proposed by [14] to automatically select the top similar question items for

4Note that all the calls to the API were made between 06/04/2023 and 11/04/2023. Link to
wrapper: https://github.com/mmabrouk/chatgpt-wrapper

https://github.com/mmabrouk/chatgpt-wrapper
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Original Question and Correct Answer:

What is the capital of Belgium?
Brussels

Zero-shot prompt input:

Generate 10 plausible but incorrect answers for the following question.
question: What is the capital of Belgium?
answer: Brussels

Figure 3.2: Example of a question with its correct answer and how we turn that into
a zero-shot prompt. Note that we translate the fixed template parts for
questions in languages other than English.

the given test instance. The Q-SIM model is a BERT-based ranking model
that returns a ranked list of question items according to their similarity to
a given test question. Figure 3.3 illustrates how we combine the original
question (to generate distractors for) with the retrieved examples into a
prompt to ChatGPT.

3.4 Experiments

3.4.1 Test Dataset

To quantitatively evaluate our distractor generating models introduced in
Section 3.3, we use the Wezooz test data introduced by [14], which comprises
300 multiple-choice questions (MCQs) designed for language and factual
knowledge learning and is aimed at secondary school students and teachers.
It includes French and English questions for language learning purposes,
while Natural sciences, Geography, History and Biology constitute the
factoid questions. Each subject has 50 MCQs. Note that the data distribution
of the factoid questions is different from the Televic dataset (see Section 3.3.1
for details), which we use to (i) fine-tune our mT5 model, and (ii) retrieve
similar examples in our demonstration-based ChatGPT model. However,
the language learning questions are drawn from the same distribution, in a
similar design setup as [14].
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Original Question and Correct Answer:

What is the capital of Belgium?
Brussels

Few-shot prompt input:

Generate 10 plausible but incorrect answers for the following question.

question: What is the capital of Germany?
answer: Berlin
incorrect answers: 1. Frankfurt 2. Paris 3. Hamburg 4. Madrid
...
question: What is the capital of France?
answer: Paris
incorrect answers: 1. Brussels 2. Marseille 3. Rome 4. Nice

question: What is the capital of Belgium?
answer: Brussels
incorrect answers:

Figure 3.3: Schematic of our demonstration-based prompt construction. The top-k
example demonstrations are automatically retrieved from the Televic
question pool, and concatenated with the instruction and test instance.
This prompt is used as a query to ChatGPT for generating distractors.
Note that the fixed template parts are translated into the language of the
test question item (i.e., Dutch or French).

3.4.2 Human Expert Quality Assessment

We also investigated our models’ output quality using human assessors,
by collecting feedback from teachers. For each of the 300 questions in the
aforementioned WeZooz test set, we generated 10 distractors with each
of our 3 models. The teachers were then presented with a randomized
list of all 30 generated distractors for each question. They were explicitly
instructed to rate each distractor independent of the other distractors in
the list, based on how much they thought it would help them if they were
given the task of preparing distractors for that specific question. We used
the four-level annotation scheme proposed by [14] to assign quality labels
to each distractor: (1) True Answer: the distractor partially or completely
overlaps with the answer key. (2) Good distractor: the distractor is viable
and could be used in an MCQ as is. (3) Poor distractor: the distractor is on
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Table 3.1: Inter-annotation agreement of experts, measured by the Jaccard similarity
coefficient.

Subjects True Good Poor Nonsense Overall

English 50.0 37.6 8.9 40.0 49.4
Geography 33.3 75.7 34.1 35.0 74.0

topic but could easily be ruled out by students. (4) Nonsense distractor:
distractor is completely out of context.

3.5 Results and Discussion

In this section, we provide evidence of the effectiveness and reliability of our
approach by reporting the experimental results and discussing the insights
obtained. In Section 3.5.1, we explain the annotation agreement among the
teachers, followed by the evaluation results in Section 3.5.2.

3.5.1 Inter-annotator agreement

Following the annotation scheme introduced in Section 3.4.2, a total of
12,860 ratings for distractor quality were collected from the annotation by
teachers (see Table 3.4 in Section 3.7 for details of rating statistics). These
ratings come from 10 distractors generated by each of the models (i.e., all
presented simultaneously to teachers as randomly shuffled list). In total, 10
teachers participated in our quality assessment study.

We adopt two strategies to determine the level of agreement between
annotators. First, we ask teachers to rate the same set of distractors using
the four-level annotation scale. We selected the subjects English, from
language category, and Geography, from factoids, for annotations by at least
two teachers. Table 3.1 shows the inter-annotator agreement of teachers
using the Jaccard similarity coefficient. The Jaccard similarity measures
the similarity between two sets of data by calculating what fraction of the
union of those datasets is covered by their intersection. In our case, it is
calculated as the number of times the teachers agreed on a distractor quality
label (i.e., one of the four labels), divided by the total number of distractors
that were annotated (by either annotator) with that label. In general, we
note a higher agreement on what is considered a good distractor compared
to the other distractor categories. Moreover, the overall agreement between
the Geography teachers is higher than the English teachers.
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Table 3.2: Expert evaluation of distractors (%). GDR: good distractor rate, NDR:
nonsense distractor rate; ↑: higher is better, ↓: lower is better; evaluation
on WeZooz test set. The markers ⋆ and ‡ respectively denote the one-
tailed significance levels of the bootstrap-based p−value, i.e., p < 0.1 and
p < 0.01 with respect to the best model Dynamic-Demo-ChatGPT in each
column.

Models Language learning Factoid learning

GDR@10 ↑ NDR@10 ↓ GDR@10 ↑ NDR@10 ↓

DQ-SIM [14] 27.9‡ 44.6‡ 28.9‡ 50.1‡

mT5 24.5‡ 42.3‡ 27.8‡ 36.6‡

Zero-ChatGPT 30.2‡ 34.6‡ 57.6⋆ 17.5⋆
Dynamic-Demo-ChatGPT 46.7 15.5 58.8 16.4

Second, we employed the widely utilized Cohen’s kappa coefficient
[35]. Our analysis substantiates the previously mentioned observation that
annotators have a greater consensus when evaluating factoid questions
compared to language-related queries as [14]. Specifically, among English
teachers, the calculated Cohen’s kappa value stands at 28.9, signifying
a “fair agreement” level. Similarly, Geography teachers exhibit a higher
level of agreement with a Cohen’s kappa value of 52, indicating a level of
agreement categorized as “moderate.”

3.5.2 Evaluation of models

Table 3.2 shows the expert evaluation of distractors in terms of good distractor
rate (GDR@10), and nonsense distractor rate (NDR@10). GDR@10 is calculated
as the percentage of distractors that were rated ‘good’ among the proposed
10 distractor for each model. Similarly, NDR@10 is calculated as the per-
centage of distractors that were rated ‘nonsense’ among the 10 candidate
distractors proposed by each model. We are interested in reporting the NDR
metric because it could be used as a measure of the reliability of educational
models, as a high occurrence of nonsense distractors may undermine users’
trust in the model. The reported metrics are averages of all the subjects in
each category (i.e., French and English for language learning, and Biology,
Natural Sciences, History and Geography for factoids). In the table, the
upward arrow (↑) indicates larger values are desired, while the downward
arrow↓ indicates smaller values are preferred.

In general, the ChatGPT-based solutions (i.e., Zero-ChatGPT, and Dynamic-
Demo-ChatGPT) were rated better in proposing plausible distractors than
the baselines. They also produced fewer nonsense distractors. Particularly,
the Dynamic-Demo-ChatGPT outperformed all the other models. On average,



78 CHAPTER 3

approximately 5 of its 10 proposed distractors were rated high-quality dis-
tractors and only 1.5 distractors were rated nonsense. Moreover, on average
8.5 distractors were generally found to be on-topic (i.e., distractors rated as
either good or poor distractors) for our best model Dynamic-Demo-ChatGPT.

All the models are better at generating effective distractors for factoids
than for language questions as shown by the higher GDR@10 results for fac-
toids than languages. We hypothesize this is because, for factoid questions,
our models are mainly tasked with generating accurately composed distrac-
tors that are contextually incorrect. In contrast, when faced with language
questions, the intended distractors may possess ungrammatical attributes,
posing a challenge for our models to generate text that is intentionally
ungrammatical.

Our purely generative local mT5 model does not improve the DQ-SIM

model (i.e., previous state-of-the-art model on the test set) at proposing good
distractors (i.e., GDR@10 of 24.5 vs. 27.9 and 28.9 vs. 27.8). However, it is a
more reliable model as it produces fewer nonsense distractors as illustrated
by its lower NDR@10 values of 42.3 and 36.6 for languages and factoids,
respectively, in contrast to the corresponding values of 44.6 and 50.1 for
the DQ-SIM model. The relatively high number of nonsense distractors in
DQ-SIM is partly attributed to its inherent limitation of only ranking pre-
existing distractors according to their relevance to a given question, thereby
lacking the ability to generate brand-new distractors.

In addition, in order to ensure the validity of the differences between
the models, we carry out a bootstrap significance analysis [36] by sampling
with replacement the annotation results DQ-SIM, mT5, Zero-ChatGPT, and
Dynamic-Demo-ChatGPT models 1000 times. The resulting one-tailed signifi-
cance levels (p values) are indicated in Table 3.2 by markers ⋆ and ‡ which
respectively denote p < 0.1 and p < 0.01 with respect to our best model
Dynamic-Demo-ChatGPT in each column.

Effect of dynamically retrieved in-context examples We replace the dy-
namically retrieved examples with randomly selected language in-context
examples from the Televic question bank, and we keep this selection con-
stant (i.e., Static-Demo-ChatGPT) to generate distractors. Similar to the other
models, we generated 10 distractors using the Static-Demo-ChatGPT model
and asked teachers to annotate the quality of the distractors. We focused on
the language learning category as it showed a huge performance improve-
ment when transitioning from Zero-ChatGPT to Dynamic-Demo-ChatGPT.

We observe that the Dynamic-Demo-ChatGPT model significantly out-
performs the Static-Demo-ChatGPT model in generating high-quality dis-
tractors as indicated by the GDR@10 metric in Table 3.3. However, the
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Table 3.3: Effect of using dynamically retrieved in-context examples: Dynamic-Demo-
ChatGPT vs. Static-Demo-ChatGPT that uses static in-context examples for
language learning. The markers ‡ denotes the one-tailed significance level
of the bootstrap-based p−value, i.e., p < 0.01 with respect to Dynamic-
Demo-ChatGPT

Models GDR@10 ↑ NDR@10 ↓

Static-Demo-ChatGPT 43.3‡ 16.2
Dynamic-Demo-ChatGPT 46.7 15.5

difference in generating less nonsense distractor (i.e., NDR@10) is not sig-
nificant. See Table 3.5 in Section 3.7 for an example of generated distractors
using the approaches.

3.5.3 Discussion of Research questions

To answer RQ1, we compare the ChatGPT-based solutions (i.e., Zero-ChatGPT,
Static-Demo-ChatGPT and Dynamic-Demo-ChatGPT) with the previous state-
of-the-art ranking-based model, DQ-SIM in generating distractors. All the
ChatGPT-based distractor generation strategies significantly outperform
the DQ-SIM.

To address RQ2, we employ the NDR@10 metric as a proxy to measure
the trustworthiness of models. Our best model produces an average of only
16% nonsense distractors, which is a remarkable improvement compared
to the previously reported state-of-the-art performance of 50% NDR@10.
This significant reduction of nonsense distractors can be expected to inspire
more trust in the approach by teachers.

To answer RQ3, we compare Dynamic-Demo-ChatGPT, which combines a
local ranking model with ChatGPT, against Zero-ChatGPT and Static-Demo-
ChatGPT. As shown in Table 3.2 and Table 3.3, combining local models with
ChatGPT leads to a better quality distractor generation, highlighting the
effectiveness of this combined approach.

3.6 Conclusion

This research paper introduced and evaluated a novel strategy designed
to guide LLMs, such as ChatGPT, in generating reliable and effective dis-
tractors for the creation of MCQs in educational contexts. Our proposed
approach, Dynamic-Demo-ChatGPT model combines a rank-based approach
with ChatGPT. This involves the dynamic retrieval of relevant question
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items through the ranker that are then presented as in-context examples to
ChatGPT for generating distractors. Our results indicated that the Dynamic-
Demo-ChatGPT showed a considerably reduced production of nonsense
distractors (i.e., only 16% rated as nonsense) compared to Zero-ChatGPT (i.e.,
out-of-the-box ChatGPT), which we consider a useful asset in terms of trust
in the model by teachers. Moreover, on average, 5 out of the 10 distractors
suggested by our approach were rated as high-quality by teachers, to be
readily used.

For future work, we aim to investigate designing a fine-grained evalua-
tion setup for distractors that takes into account various factors such as the
level of the student, the difficulty of the questions etc. There is also a poten-
tial to explore alternative prompting strategies for LLMS, when generating
distractors. For example, the utilization of self-correcting mechanism [37],
which involves revising the initial output of an LLM by evaluating certain
aspects of the text, could be explored in the context of distractor generation.

3.7 Appendix

3.A User Study Details

This section contains the user study details. Table 3.4 describes the data
gathered from the annotations provided by teachers. Every subject contains
50 questions, except English which has 48 questions. We collected 12,860
annotations for the proposed candidate distractors (i.e., 10 distractors by
each of the three models). A total of 10 teachers participated in the study.
English (i.e., from languages) and Geography (i.e., from factoids) were
annotated twice by two different teachers to calculate inter-annotator agree-
ment. Additionally, to study the effect of dynamic retrieval of in-context
examples, we asked 1 English and 1 French teacher to annotate the distrac-
tor predictions from the Static-Demo-ChatGPT model. The second column
(i.e., Item count), shows the number of question items for each subject in
the Wezooz dataset. Alongside, the distractors count column provides two
distinct values: the gold truth distractors count within the dataset, and the
count of unique distractors generated by our models. It is important to note
that different models may produce identical distractors for a given question,
resulting in varying numbers of newly generated distractors across the
different subjects.

3.B Example Generated Distractors

Table 3.5 shows a cherry-picked example of our ChatGPT-based models.
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Table 3.4: Ratings Data Description

Subjects Item count Distractors count Ratings count No of Raters

Gold Generated

English 48 130 1324 3360 3
French 50 92 1396 2000 2
Geography 50 145 1248 3000 2
History 50 130 1354 1500 1
Biology 50 88 1391 1500 1
Nat. Sciences 50 100 1449 1500 1

Total 298 685 8162 12860 10
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Table 3.5: Some generated examples from Zero-ChatGPT, Dynamic-Demo-ChatGPT,
Static-Demo-ChatGPT models for English. High-quality distractors are
shown in boldface, while on-topic and nonsense distractors are italicized
and underlined, respectively. We only show 2 in-context examples for the
Static-Demo-ChatGPTand Dynamic-Demo-ChatGPTmodels as part of the
prompt but in practice, we use 5 of such examples.

Model Example

Zero-
ChatGPT

Prompt: Generate 10 plausible but incorrect answers for the following ques-
tion.
question: They do n’t speak English and can not make ... understood.
answer: themselves
Ground: [them, us,you]
Prediction: [1. each other, 2. any sense, 3. a sentence, 4.
appropriate gestures, 5. complete thoughts, 6. proper communication, 7.
accurate translations, 8. meaningful conversation, 9. clear statements, 10.
intelligible sounds]

Static-
Demo-
ChatGPT

Prompt: Generate 10 plausible but incorrect answers for the following
question.
question: Why do n’t we ask Jane to come over and talk ? She ’s an ...
answer: alumna
incorrect answers: 1. alumnus 2. alumni 3. alumn
question: Choose the opposite of the word in bold . This company is
loss-making .
answer: profit-making
incorrect answers: 1. loose 2. lucrative 3. unprofitable

. . .

question: They do n’t speak English and can not make ... understood.
answer: themselves
Ground: [them, us,you]
Prediction: [1. themselvess, 2. themselves 3. themselfs, 4. themselfes, 5.
themselfis, 6. themselfies, 7. themselfves, 8. themselfselves, 9. themselfiness,
10. themselfulated ]

Dynamic-
Demo-
ChatGPT

Prompt: Generate 10 plausible but incorrect answers for the following
question.
question: They should choose ... would be best suited for the job
answer: which
incorrect answers: 1. whom 2. that 3. him who
question: 36 . He does not speak English and can not make ... understood .
answer: himself
incorrect answers: 1. you 2. us 3. herself
question: The new e-ticketing system , ... ... ... ... was installed last month ,
is working well .
answer: which
incorrect answers: 1. what 2. him 3. where

...

question: They do n’t speak English and can not make ... understood.
answer: themselves
Ground: [them, us,you]
Prediction: [1.theirself, 2. theirselves, 3. themself, 4. themselfs, 5. theirs,
6. us, 7. they, 8. them is, 9. theyself, 10. themselfes ]
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4
Adapting Language Models to

Gap-filling Exercise Generation for
Language Learning

In this chapter, we adapt a language model to yet another educational task but a
very specialized task of gap-fill grammar exercise generation for language learning
in French. We create a real-world dataset of French gap-filling exercises covering
an unknown combination of grammatical aspects. We introduce the task as an
example-aware prediction of suitable gaps in texts based on partially annotated data.
We propose and train a novel neural network architecture for the newly defined
task based on a language model. We showcase that conditioning the model’s output
for a given input text on an example exercise of the envisioned exercise type, leads
to an increased effectivenesss, compared to an example-independent baseline model.
Additionally we analyse the model’s ability to disentangle elementary exercise types,
without being explicitly trained to do so, and we observe that it can recognize types
to some extent, especially for the most commonly occurring types in the test set.

⋆ ⋆ ⋆

Learning from Partially Annotated Data: Example-aware Cre-
ation of Gap-filling Exercises for Language Learning
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In Proceedings of the 18th Workshop on Innovative Use of NLP for
Building Educational Applications (BEA 2023)

Abstract Since performing exercises (including, e.g., practice tests) forms
a crucial component of learning, and creating such exercises requires non-
trivial effort from the teacher, there is a great value in automatic exercise
generation in digital tools in education. In this paper, we particularly focus
on automatic creation of gap-filling exercises for language learning, specif-
ically grammar exercises. Since providing any annotation in this domain
requires human expert effort, we aim to avoid it entirely and explore the
task of converting existing texts into new gap-filling exercises, purely based
on an example exercise, without explicit instruction or detailed annotation of the
intended grammar topics. We contribute (i) a novel neural network architec-
ture specifically designed for aforementioned gap-filling exercise generation
task, and (ii) a real-world benchmark dataset for French grammar. We show
that our model for this French grammar gap-filling exercise generation
outperforms a competitive baseline classifier by 8% in F1 percentage points,
achieving an average F1 score of 82%. Our model implementation and the
dataset are made publicly available1 to foster future research, thus offering
a standardized evaluation and baseline solution of the proposed partially
annotated data prediction task in grammar exercise creation.

4.1 Introduction

While digital education tools have been increasingly developed and de-
ployed for over a decade, the e-learning sector has definitely boomed in
the wake of COVID-19, even leading to a new Digital Education Action
Plan from the European Commission.2 As one application in e-learning, we
particularly focus on language education, and specifically on the automatic
generation of gap-filling grammar exercises. This type of exercises has
been shown to be very effective in language learning, with a noticeable
effect of such practice tests on students progress and is generally considered
as a global measure of language proficiency [1]. Furthermore, automatic
generation of exercises has been shown to produce relatively high quality
exercises, for example, for multiple choice questions [2], demonstrating the
potential effectiveness of reducing human effort and offering cost-effective

1https://github.com/semerekiros/GF2/
2https://education.ec.europa.eu/focus-topics/digital-education/action-plan

https://github.com/semerekiros/GF2/
https://education.ec.europa.eu/focus-topics/digital-education/action-plan
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solutions towards personalized exercise generation. In terms of technology,
recent developments in natural language processing, e.g., BERT [3], GPT-
3 [4], InstructGPT [5], open up new opportunities for further upscaling and
improving automatic generation of such tests/exercises.

In this paper we specifically propose to generate grammar exercises
from existing texts, by inducing well-chosen gaps in a given input sentence,
following a set of given example exercise sentences. Further, we aim to cre-
ate models that can be trained on the exercises themselves, without further
annotations. The latter implies that we want to forgo a fully supervised
learning setting, because such models would require each gap in the avail-
able exercises to be manually annotated with additional metadata, such as
the particular exercise type, e.g., for gap-filling exercises, a suitable category
such as a verb tense. Thus, we focus on converting given input texts into
gap-filling exercises, by mimicking the implicit rules underlying a given
example exercise, rather than by following explicit instructions such as a
prescribed exercise type.

Application scenario: Consider a language teacher, who just introduced
a particular grammatical topic (e.g., a new verb tense), and needs the stu-
dents to practice. The grammar topic of interest may need to be practiced
in combination with particular other topics (e.g., related tenses already
studied by the students). Given that gap-filling questions can be completed
online and automatically assessed [6], the teacher creates a new gap-filling
exercise, covering these combined grammar topics. The goal of our model
is then to support the automatic creation of new exercises, based on that
example exercise, by transforming other texts provided by the teacher into
additional gap-filling exercises that target the same linguistic topics to be
practiced, without explicit instructions by the teacher of which topics the
model should include. This would allow the teacher to rapidly create new
training material for the students, potentially more diverse, for example,
in terms of topics of the texts, their temporal relevance, or the inherent
linguistic difficulty.

Learning from partially annotated data: The scenario outlined above
represents a learning task in between one-shot learning (i.e., learning from
one example [7] and full supervision (i.e., based on the full annotation of
all examples). On the one hand, the one-shot setting considers the example
exercise as a single training instance defining the nature of the prediction
task by the way it was constructed by the teacher (in this case, the included
grammar topics). On the other hand, the fully supervised setting would
require at least explicit knowledge of all exercise instructions (i.e., gap types
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per exercise). Although we assume the availability of an entire corpus
of such exercises, on overlapping grammar topics, we will not rely on
explicit annotation of the nature of the gaps (i.e., gap type that defines
the type/scope of the grammar exercise, or even just identifying the word
category). Thus, we do want to learn from partially annotated examples,
where the annotation is limited to just the indication of the gap and the text
span that constitutes the expected answer. This basically amounts to the
type of information that would be available in a one-/few-shot setting, but
we aim to leverage the complete corpus to train our models.

Note that, while creating exercises, teachers are aware of the envisioned
exercise type and the gap types, and such exercise type would also be
communicated (e.g., as a free-text instruction) to students. Still, to keep our
experiments and the gained insights transparent, we left out any exercise
level instructions for our experiments.

Example 1 Example 2

1 Will you work a lot?

3 I hope my favorite team won't lose any 

more games. 

 3 J’espère que mon équipe favorite 

   ne perdra plus aucun match.

2 By not eating sweets, you will lose 

  weight quickly!

2 En ne mangeant plus de bonbons,

  tu  maigriras vite! 

5 Mum will make spaghetti tonight.

5 Maman  préparera  des spaghettis ce soir.

4 Maxime promised me that he will never

  lie again.

4 Maxime m’a promis qu’il ne  

   mentira plus jamais.

A l'âge de 27 ans, le Californien David Blancarte

a eu un grave accident de scooter. Quand il s'est

réveillé  à l'hôpital, il ne sentait  plus ses 

jambes. On lui a expliqué  qu'il ne pourrait 

plus marcher. C' était une vraie catastrophe 

pour lui! Pendant une longue période de

revalidation, il a appris  à se déplacer en chaise.

roulante. ...

At the age of 27, Californian David Blancarte had

a serious scooter accident. When he woke up

in the hospital, he no longer felt his 

legs.  It was explained to him that he couldn't 

walk anymore. It was a real disaster for him!

During a long period of rehabilitation, he learned

.

to move around in a wheelchair.

1 Vous  travaillerez  beaucoup? 

Figure 4.1: French grammar exercise from the GF2 corpus, with English translations
for convenience shown in light grey. Green spans (with solid underline)
are actual gaps as selected by teachers in the dataset, red spans represent
potential gaps on other grammar topics but were not marked as gaps.
(Left) Isolated sentence exercise with focus on a single tense (futur simple);
(right) full text exercise combining two tense types (imparfait and passé
composé).

Link with related research: In broad terms, the proposed work fits within
the area of Automatic Question Generation (AQG) for the educational
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domain. In the field of education, creating questions manually is an arduous
task that demands considerable time, training, experience, and resources
from educators [8]. As a solution to this challenge, researchers have turned
towards AQG approaches to automatically generate homework, test, and
exam exercises from readily available plain text that requires little to no
human calibration. In particular, educational AQG systems have been
developed for generating factoid questions covering several subjects such as
history [9, 10], general sciences [11–13], health and biomedical sciences [14,
15], etc., as well as for language learning such as vocabulary or grammar
exercises [16–18]. There has been some more generic recent work, however,
on finding distractors for multiple choice questions across subjects and
languages [19]. It is line with recent work on training deep neural networks
for general-purpose question generation [20], based on large training sets.
There is a clear preference for two question types that allow for automated
assessment, i.e., multiple-choice questions (e.g., in [10, 12, 14, 15]) or gap-
filling questions (as in [17, 18, 21, 22]).

Our work is focused on gap-filling questions, which typically require
test-takers to fill in blank spaces in a text with missing word(s) omitted
by test developers. The missing words can either be chosen from a set of
possible answers (i.e., closed cloze questions), or generated from scratch
using hints provided in the text (i.e., open cloze questions). To generate
such questions, various strategies were employed, such as deleting every
nth word from a text [23], or rationally deleting words according to specific
purpose, e.g., usage of prepositions [24], verbs [25] etc. Previous studies
have relied on selecting informative sentences [26, 27] from existing corpora,
such as textbooks [28], WordNet [27], and then using techniques such as
POS tagging [28] or term frequency analysis [2] to determine gap positions.
More recently, [29], have developed sequence labeling model to automate
the process of generating gap-filling exercises.

Another very relevant work by [30] devised a method to adapt an ELEC-
TRA [31] model for the purpose of generating open cloze grammar exercises
in English. Their approach involved classifying each individual token as
either a gap or non-gap. However, there exist several notable distinctions
between their approach and our own. Firstly, unlike their method that solely
focused on individual tokens, we make gap decisions based on spans. This
distinction is essential as our gaps can encompass multiple words, allow-
ing for more comprehensive and contextually accurate grammar exercises.
Secondly, our objective and experimental setup differ significantly. Our
ultimate goal is to generate multiple versions of the same text, with each
version targeting a distinct grammar aspect (e.g., future tense, prepositions
of time or combinations of different types). In contrast, their approach
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consistently produces exercises of the same type for a given input text (i.e.,
similar to our baseline model), lacking the versatility and adaptability our
model offers.

We observed a tendency in generation of gap-filling questions aiming
at well-defined tasks. To the best of our knowledge, none of the prior
works have proposed strategies to capture common underlying structures
in terms of task definition, while training on a heterogeneous set of real-
world examples (e.g., covering various grammatical topics).

Key research contributions:

• We introduce the task of the example-aware prediction of suitable
linguistic gaps in texts based on partially annotated data. This task
is of paramount importance in the development of new gap-filling
exercises.

• We present our real-world dataset of French gap-filling exercises cov-
ering unknown combinations of grammatical aspects. Our dataset
called GF2 (‘Gap-Filling for Grammar in French’) is released as a research
benchmark for the introduced task.

• We propose and train a suitable neural network architecture for the
task, and show that conditioning the model’s output for a given input
text on an example exercise of the envisioned exercise type, leads to an
increased effectiveness, compared to an example-independent base-
line model. Additionally we analyse the model’s ability to disentangle
elementary exercise types, without being explicitly trained to do so,
and we observe that it can recognize types to some extent, especially
for the most commonly occurring types in the test set.

4.2 Gap-filling Exercise Creation as a Span Detec-
tion Task

This section describes the particular prediction task this paper focuses on.
We cast the creation of a French gap-filling exercise from an input text as a
binary span detection task: the goal is detecting each span (i.e., consecutive
sequence of tokens) that represents a correct gap. For clarity, we left out
creating the ‘hint’ (e.g., the infinitive for verbs) which would make it a
finalized gap-filling exercise, as it is considered less challenging and may
deviate attention from the core problem of identifying the correct spans.

Figure 4.1 shows two example gap-filling exercises, with indication of
the ground truth spans in green (and with solid underline). We denote
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the distinguishing feature of each gap as its gap type (e.g., the tense futur
simple for each of the valid tags in Example 1). An exercise typically covers
multiple gap types, and the particular combination that characterizes a
given exercise is called its exercise type. As such, many different exercise
types can be constructed, and some may be unseen in the training data.
For example, Example 2 (again in Fig. 4.1) combines three tenses (imparfait,
passé composé, and conditionnel présent), which constitutes its exercise type.
However, the same text could have been enriched with different gaps,
corresponding to a different exercise type. In fact, our test set of one hundred
exercises, for which we annotated gap types in terms of 12 elementary verb
tenses, covers a total of 35 such composite exercise types.

Considering the lack of information regarding the exercise types for
the training exercises, we further define the task we are examining more
precisely. The objective is to detect the valid spans (i.e., spans that will be
designated as gaps) of a given flat input text that mimics the same under-
lying exercise type as an example gap-filling exercise, which we denote as
the exemplar. This exemplar serves as an indirect reference for the model
to understand the desired exercise type. By utilizing this approach, we can
better inform the model about the desired exercise type while accounting
for the lack of exercise information available.

Note that our goal is working with real-world data. Our training data
contains gap-filling examples following particular unknown exercise types.
Moreover, teachers appear to not always select every possible span that
satisfies the exercise type. We saw cases in our dataset (cf. Section 4.4.1),
where the same verb occurring twice in the same form would be selected as
a valid gap only once. Such real-world ‘inconsistencies’ contribute to the
challenging nature of learning from such data without additional annota-
tions.

4.3 Example-aware span detection model

This section describes our baseline model and proposed example-aware gap
detection model. Figure 4.2 provides a schematic overview. We first detail
the part indicated as Baseline model, inside the smaller dashed box, followed
by the part that encodes the exemplar, which leads to the full model.

Baseline model: An input text t, consisting of N tokens t = [t0, t1, . . . , tN−1]
is encoded by a transformer based masked language model (MLM), in our
experiments the multilingual XLM-RoBERTa [32]. From the corresponding
transformer outputs [h0, h1, . . . , hN−1] (with hi ∈ Rk, i=0. . . N-1), vector rep-
resentations are constructed for all possible spans inside the input sequence,
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Dot product

[CLS]

logit

+

Span Embedding

Baseline model 

Example-based span detector

[begin ⊕ end
 

⊕
width emb]

Span score

"She [[had done]] her home work.
 I [[have been working]] for a year.
 They [[had gone]]."

ExemplarInput "I had woken up earlier ... ".

......

MLM MLM

Figure 4.2: Example-aware gap detection model architecture. ⊕ denotes concatena-
tion. In general, the model considers all possible spans up to a maximum
width, but we depict here only one span from the input for brevity.

up to a certain length (in our experiments 12 tokens). The goal is then to
make a binary prediction in terms of valid gaps, for each of these spans. In
particular, for a span ς = [tstart, . . . , tend] with endpoint tokens tstart, tend
and width |ς| = (end − start + 1) in the input text, the corresponding span
representation hς is constructed as

hς = FFNN
(
hstart ⊕ hend ⊕ h|ς|

)
in which ⊕ represents vector concatenation, h|ς| corresponds to a span
width embedding, jointly learned with the model, and FFNN is a fully con-
nected feed-forward model with a single hidden layer, ReLU activation, and
output dimension k. The XLM-RoBERTa output representations hstart and
hend of the start and end token of ς are concatenated with the span width
embedding h|ς|, and transformed through FFNN into the k-dimensional
span representation hς. The probability of span ς representing a valid gap
is modeled as

pbase(ς) = σ
(
w · hς + b

)



GRAMMAR GAP-FILL 95

in which the trainable parameters w and b are a k-length coefficient vector
and bias, respectively, σ is the sigmoid function, and · represents the dot
product. The baseline model is trained by minimizing the cross entropy
loss between each span’s score pbase(ς) and its label (1 for valid gaps, 0
otherwise). At inference, spans are predicted as gaps as soon as pς ≥ 0.5.

Example-aware gap detection model: As shown in Fig. 4.2, our example-
aware model is a direct extension of the baseline model which by construc-
tion makes example-unaware predictions. The same MLM that encodes
the input, is now used to also encode the exemplar, which contains the
example exercise text as well as the correct gap information. The latter
is added by surrounding each gap with the special tokens ‘[[’ and ‘]]’ (as
seen in the figure). Details on how the examples are chosen, are provided
in Section 4.4.2. The exemplar representation hexemplar is obtained as the
MLM’s [CLS] representation3.

We then quantify the compatibility of each span ς in the input text
with the exemplar, through the dot product hexemplar · hς of their respective
representations. In a direct extension of the baseline model, it leads to
the proposed model for the probability pexample-aware(ς) that ς represents a
valid gap:

pexample-aware(ς) = σ
(
hς · w + hς · hexemplar + b

)

4.4 Empirical validation on real-world data

In this section, we first introduce the dataset that we will publicly release.
Then, we explain how we train our models and use them for inference.
Finally, we describe the strategies we adopted to evaluate the effectiveness
of our models.

4.4.1 GF2 dataset: Gap-Fill for Grammar in French

We denote our new dataset as “Gap-Filling for Grammar in French” (GF2). It
was contributed by Televic Education4, and gathered through its education
platform assessmentQ5. AssessmentQ is a comprehensive online platform
for interactive workforce learning and high-stakes exams. It allows teachers

3[CLS] is a special token that is prepended to the input, and its corresponding output
representation is pretrained to represent the entire sequence that is used for classification tasks

4https://www.televic.com/en/education
5https://www.televic-education.com/en/assessmentq

https://www.televic.com/en/education
https://www.televic-education.com/en/assessmentq
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to compose their questions and answers for practice and assessment. As
a result, the dataset is made up of a real-world set of gap-filling grammar
exercise questions for French, manually created by experts. We cleaned
and preprocessed the data before we could use it to train our models. First,
organizational metadata information was removed. Other elements that
we removed are the hints within the body of the text that could easily give
away the gap positions, as well as inline instructions (if present) about the
exercise type. Second, we automatically stripped off HTML tags from the
documents. Our final dataset contains a total of 768 exercise documents,
in which a total of 5,530 spans are tagged as gaps. The exercises were
randomly split into 618 train documents, and 50 and 100 for validation and
test, respectively. Table 4.1 summarizes GF2’s descriptive statistics.

For the validation and test exercises, we made an extra manual effort
to enrich each of the existing gaps with their gap type. Our annotations
reflect the fact that the data contains a mix of verb and non-verb gaps. Every
gap has an associated word type attribute (e.g. adverb, adjective, verb)
and in case of verbs a tense attribute. In what follows we zoom in on the
verb gaps and consider the tense as the main gap type. The bottom half
of Table 4.1 shows the frequency of occurrence for the main verb types
in the development and test documents. We use these annotations to get
insights into the dataset and to evaluate the properties of our models (see
Section 4.5). Note that the examples shown in Fig. 4.1 are actual entries
from the GF2 dataset.

4.4.2 Training and inference

Our baseline model is relatively straightforward to train. We designate
all spans indicated as gaps in our training data as valid gaps, which are
considered positive examples. Conversely, any spans that are not indicated
as gaps are labeled as negatives. We train our model by minimizing the
cross entropy loss between each span’s predicted score and its label as
described in Section 4.3. However, training our example-aware model
poses a challenge due to the lack of knowledge regarding the exercise types
of the training exercises. Using one exercise as an example and another
exercise of the same type as the input, along with the corresponding targets,
is not therefore feasible. Instead, we make the assumption that exercises are
generated by teachers who consistently follow the underlying exercise type
throughout the entire exercise. As a result, we divide the training exercises
into two parts: one part is used as an exemplar, and the other part serves as
the actual input, for which the gaps are assumed to follow the same exercise
type.
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Table 4.1: Statistics of the GF2 dataset and breakdown into key verb tenses (gap
types) in the validation and test split. For the train split we only know
gap spans, not their types, since they are not labelled.

Train Dev Test

# Documents 618 50 100
# Sentences 4786 378 707
# Gaps 4518 365 647

Subjonctif Présent (SPR) UNK 1 28
Passé Composé (participe passé) (PCP) UNK 31 8
Passé Composé (PC) UNK 84 108
Imparfait (IM) UNK 8 46
Conditionnel Présent (CPR) UNK 23 92
Passé Récent (PR) UNK 0 12
Futur Proche (FP) UNK 1 9
Futur Simple (FS) UNK 8 49
Indicatif Présent (IP) UNK 126 144
Conditionnel Passé (CPA) UNK 0 3
Impératif (IMP) UNK 12 26
Plus-que-parfait (PQ) UNK 0 1

To this end, we first segment each document in the training set into a
list of sentences, along with their corresponding target gap positions. We
create a new (exemplar, input) training pair by sampling one sentence to be
used as the input, and uniformly sampling one up to m sentences from the
remaining sentences within the same document to be used as the exemplar.
The exemplar is constructed by concatenating these sampled sentences, with
the addition of special symbols denoting the gap locations. (See Appen-
dix 4.A for details.) These are the positive training examples that encourage
the model to correctly learn predicting example-aware gaps. However, to
facilitate efficient learning, it is crucial to also provide negative examples on
which the model should not predict gaps. To create such negative training
instances, a sentence is sampled as input from the considered document,
but its span targets are set to zero (no gaps), and the negative exemplar
is composed as before (including indicating the gaps), but by sampling
sentences from a randomly selected other training exercise. There is risk of
incidentally creating false negative training examples, if the exemplar gaps
correspond with left-out gaps in the input. However, negative exemplars
appeared important for obtaining a suitable model.

We determine the optimal proportion of negative to positive instances
for training our models by employing a fine-tuning approach utilizing the
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macro F1 score as the evaluation metric on the validation set. This increases
the impact of the rarer gap types in the metric, and therefore in the final
model, which we considered important for practical use. Other choices
could have been made, however. Ultimately, the final model is trained on
the union of the training and validation splits, using the optimal proportion
determined via the fine-tuning process.

During inference, we use our trained model to predict the gap positions
for an input text that is implicitly conditioned on the target exercise type
through the exemplar.

Implementation and training details: We implement our models using
pytorch and Huggingface. We initialize our MLM encoders with xlm-
roberta-base. To avoid extensive hyper-parameter tuning, we made the
following choices; a learning rate of 2e−5 in combination with the robust
Adam optimizer. We use a batch size of 16 and train our models for 30
epochs. We consider all spans up to a maximum length 12 and we set k, the
number of sentences per exemplar to 3.

Table 4.2: Tense disentangling ability in terms of precision, recall, and F1 (in %) on
the test set, as reported for each key verb tenses (with on the right their
support, i.e., number of occurrences). We also show the macro F1 score
for the static baseline (baseline) and our proposed example-aware gap
prediction (ours).

Baseline Ours

Tenses P R F1 P R F1 Support

SPR 5.0±0.3 78.6±8.9 9.4±0.6 7.5±0.2 81.0±12.5 13.7±0.4 28
PCP 0.1±0.1 4.2±6.3 0.2±0.3 12.6±4.1 62.5±12.5 20.7±6.2 8
PC 21.3±1.2 86.4±3.7 34.2±1.8 64 ±9.4 86.1±1.9 73.1±5.5 108
IM 9.3±0.4 88.4±3.7 16.2±0.8 12.0±2.5 78.3±10.9 20.9±3.9 46
CPR 19.9±0.5 94.5±2.9 32.8±0.8 28.3±2.9 92.4±4.7 43.2±3.1 92
PR 2.7±0.1 100.0±0.0 5.3±0.1 9.7±2.0 100.0±0.0 17.7±3.3 12
FP 1.6±0.0 77.7±0.0 3.1±0.1 6.0±0.9 77.8±0.0 11.1±1.5 9
FS 9.9±0.3 88.5±1.7 17.8±0.5 13.6±1.1 84.4±10 23.3±1.7 49
IP 24.6±1.2 75.0±4.3 37.1±1.9 32.0±1.4 66.2±11.9 42.9±2.4 144
CPA 0.1±0.1 11.1±16 0.2±0.3 0 0 0 3
IMP 5.2±0.3 88.5±2.2 9.9±0.5 16.8±1.7 84.6±3.9 25.3±2.1 26
PQ 0.2±0.0 100.0±0.0 0.5±0.0 0.6±0.1 100±0.0 1.2±0.2 1

Macro F1 13.9 24.4
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4.4.3 Evaluation setup

In order to assess and analyze the performance of the baseline and the
example-aware model, we design two evaluation strategies that look at
different effectiveness aspects.

Binary gap prediction evaluation: the primary objective of our model is
to mimic the real-world setting where gap labels are not given. We measure
how well our models predict gap positions (i.e., gap or no-gap decisions
for all input spans). To do this, we split up each of the exercise documents
in our test into two parts that are roughly the same size, given that by
assumption they then represent the same exercise type. We calculate the
automated metrics by using one half as the exemplar and the second as the
input text to our model. We repeat this process by exchanging the roles of
the parts. It is worth noting that we excluded one-sentence test documents
(i.e., because they can not be chunked into two parts), which amount to 16%
of the total test documents. However, since most of the excluded sentences
(i.e., one-line documents) only had one gap, we only removed 2.7% of the
total gaps in the test set.

Gap type disentangling evaluation: The goal of the second evaluation
setting is to analyze how well the model has learned to disentangle individ-
ual gap types, despite not being explicitly trained to do so. This analysis is
based on the assumption that a model that scores high on that aspect, would
be stronger in dealing with new or rare exercise types. Potentially even at
creating new combinations of existing exercises. This is an aspect we plan
to study further when designing more advanced models in future research.
To this end, we construct a small set of 12 exemplars, one for each of the
key verb tenses, by randomly selecting them from the original data and
subsequently removing them from the train/validation/test splits. Each
exemplar comprises multiple sentences, all of which are homogeneously
annotated with the same intended verb type, which will serve as the desired
homogeneous exercise type. We evaluate our model on every sentence of
the test set, by prompting it with each of these 12 fixed exemplars. Based
on the gap types we annotated on the test set, we can then compute the
precision, recall and F1 score for each of these 12 tenses.

4.5 Experimental Results

In this section, we provide evidence of the effectiveness of our proposed
model by reporting and discussing the experimental results. Table 4.3
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summarizes the binary gap prediction evaluation of the baseline vs. the
example-aware model on the test set. We report our results as the mean
and standard deviation over five runs, each using a different random seed
for model training. The proposed example-aware model (denoted as ours)
consistently outperforms the example-unaware baseline on all metrics. In
general, there is an absolute gain of 8 percentage points in F1 for the pro-
posed model in comparison with the baseline, achieving an average F1
score of 82.4%. This confirms our intention when designing the model, that
providing example exercises leads to an increased effectiveness in terms of
predicting gap positions compared to the static baseline model.

Table 4.3: Overall binary gap prediction in terms of precision, recall, and F1 (in %)
on the test set. Results shown for the static baseline (baseline) and our
proposed example-aware gap prediction (ours).

Precision Recall F1

Baseline 74.87±2.44 73.11±2.00 73.92±0.49

Ours 84.30±1.70 80.74±1.80 82.40±0.20

In Table 4.2, we show the evaluation of our models in their ability
to disentangle the 12 main verb types. We observe that for the tenses
with relatively higher support, the example-aware model outperforms the
baseline with certainty as demonstrated by the individual F1 scores.

The overall macro F1 score for the example-aware model stands at 24.4%,
which is low in absolute value, but considerably higher than the baseline’s
macro F1 score of 13.9%. We observe that the proposed model is able to
recognize verb types such as passé compassé (PC), imparfait (IM), and
conditionnel présent (CPR) to some extent with F1 scores of 73%, 43%, and
42%, respectively. However, the low overall scores are not unexpected,
because the models are not trained to recognize gap types. Furthermore,
some tenses are either very rare (e.g., PQ, CPA, PCP) as indicated by their
support, or may appear mainly in combination with other exercise types.
This makes achieving a better resolution in disentangling gap types without
any explicit gap labels during training an inherently difficult task.

4.6 Conclusion

In this paper, we introduced a new task within the general challenge of train-
ing models to automatically create new exercises for use in education, based
on existing exercises and without requiring additional manual annotations.

In particular, we introduced a dataset and associated prediction task,
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focusing on detecting gaps within a given input text, without knowledge
of the exact exercise type, by only relying on an example exercise. We
proposed an example-aware neural network model designed for this task,
and compared it with a baseline model that does not take into account any
example of the desired exercise type. We found that our example-aware
model outperforms the baseline model not only in predicting gaps, but also
in disentangling gap types despite not being explicitly trained on that task.
Our real-world GF2 dataset of French gap-filling exercises will be publicly
released together with the code to reproduce the presented empirical results.

The presented work fits with our pursuit towards supporting personal-
ized learning experiences by either suggesting existing or generating new
exercises that are tailored to students’ needs. Teachers could also benefit
from an increased efficiency in creating new exercises. For example, they
could make many and diverse drill and practice exercises on chunks of
text based on existing standard exercise types without having to provide
extra metadata information such as instructions. We hope our benchmark
dataset and task will spark new research in the CL and Educational NLP
community.

Limitations

We identify two limitations of the current work and make suggestions for
future directions. First, while our proposed method is language-agnostic
in principle, our evaluation is limited to our French benchmark dataset.
Expanding our approach to encompass other languages would bring new
and interesting challenges for further investigation. Second, despite topic
diversity within our exercise documents (e.g., the first example in Fig. 4.1
consists of independent sentences, while the second is a coherent text cen-
tered around the same topic.), it would be interesting to quantify the degree
of topical bias introduced during our training process and its impact on our
binary task evaluation. For future work, we first aim to adapt seq2seq mod-
els for our task particularly text-to-text models such as T5 [33]. There is also
potential to explore different prompting strategies for large language models
(LLMs), when generating gap-filling grammar exercises. For instance, the
utilization of chain-of-thought prompting [34], which involves generating
intermediate steps before producing the final response, could be explored
for generating grammar exercises. Additionally, an interesting future study
would involve investigating the number of example demonstrations that
LLMs require in order to accurately mimic example gap exercises.
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Ethics Statement

In this research, we posit that the dataset and models introduced are of
low-risk in terms of potential harm to individuals. The dataset used is a
curated selection of existing educational content enriched with meta-data,
and we are confident that our compilation of the dataset has not introduced
any additional ethical risks. However, it is crucial to emphasize the need for
accountability and the establishment of clear guidelines for the deployment
of grammar generation models, such as the ones benchmarked in this paper,
for educational purposes.

It should be noted that our models are derived from general-purpose
neural language encoders that have been trained on real-world data, which
may contain biases or discriminatory content [35]. As a result, our models
may have inherited some of these biases and could potentially base their
prediction on such biased information. Therefore, it is imperative for educa-
tors and researchers to thoroughly consider these ethical issues and ensure
that the generated grammar questions align with educational goals and do
not perpetuate harmful biases.

Educators should retain the final authority in accepting or modifying
grammar question suggestions generated by such models, keeping their
educational goals in mind (e.g., in terms of formative and especially summa-
tive assessment). In practice, these models are designed to enhance teachers’
efficiency in preparing teaching materials, rather than replacing teachers
in any way. An important benefit of using AI-supported question genera-
tion with increased efficiency is the potential for personalized approaches
towards students.
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4.7 Appendix

4.A Training details

In this section we detail our training procedure. As depicted in Fig. 4.3,
we first split training exercises into list of sentences, along with their corre-
sponding gap position indications. In order to create new (input, exemplar)
pair, we sample 1 sentence from the sentence list to be used as our input
text, and we uniformly sample 1 up to m (we set m = 3) sentences from the
remaining sentence list to be used as our exemplar. We form our exemplar
by concatenating all the sampled sentences with gap positions indicated
by special tokens “[[” and “]]”. Then our model is trained by minimizing
the binary cross entropy (BCE) loss between predicted gaps and their target
labels (1 for valid gaps, and 0 otherwise).
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Figure 4.3: Training procedure of our example-aware gap detection model. First, we
split exercise documents into list of sentences. Then we create (input,
exemplar) training pairs that will be used by our model. We use one
sentence as an input, while the exemplar is made up of sentences that
are uniformly sampled from the remaining sentences. The exemplar
is constructed by concatenating the m sampled sentences. The special
symbols “[[” and “]]” in the exemplar indicate the gap positions. Binary
cross entropy (BCE) loss is used to train our models.
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5
Adapting Coreference Resolution to

new target languages

In this chapter, we extend our adaptability theme of the thesis to adapting a fun-
damental NLP task – conference resolution – to new languages. We explore the
appealing idea of leveraging translation tools for bootstrapping coreference resolu-
tion in languages with limited resources. We propose and analyze two strategies
(i) translate the training data in high-resource language to the target language
and train a coreference model and (ii) translate the test data into high-resource
source language (e.g., English) and use a trained coreference model for inference.
Moreover, we study the source of errors for these two strategies and reveal that
in fact the quality of contemporary machine translation tools is the main limiting
factor.

⋆ ⋆ ⋆

Lazy Low-Resource Coreference Resolution: a Study on Lever-
aging Black-Box Translation Tools

S.K. Bitew, J. Deleu, C. Develder and T. Demeester

In Proceedings of the Fourth Workshop on Computational Models of
Reference, Anaphora and Coreference (CRAC) at EMNLP 2021.



110 CHAPTER 5

Abstract Large annotated corpora for coreference resolution are available for
few languages. For machine translation, however, strong black-box systems
exist for many languages. We empirically explore the appealing idea of
leveraging such translation tools for bootstrapping coreference resolution
in languages with limited resources. Two scenarios are analyzed, in which a
large coreference corpus in a high-resource language is used for coreference
predictions in a smaller language, i.e., by machine translating either the
training corpus, or the test data. In our empirical evaluation of coreference
resolution using the two scenarios on several medium-resource languages,
we find no improvement over monolingual baseline models. Our analysis
of the various sources of error inherent to the studied scenarios, reveals that
in fact the quality of contemporary machine translation tools is the main
limiting factor.

5.1 Introduction

End-to-end coreference resolution is the task of identifying and clustering
all spans of text that refer to the same entity in a document. It serves as
an important step for several downstream NLP tasks that involve natural
language understanding, including question answering [1], information
retrieval, and text summarization [2, 3]. Recent advances in deep learning
have resulted in state-of-the-art performance on coreference resolution
[4–8]. The performance of these models, however, highly depends on the
existence of large annotated datasets. Still, for many languages that lack
large annotated coreference corpora, Machine Translation (MT) tools of
an ever increasing quality are available. The idea studied in this work, is
whether existing black-box translation tools can be readily leveraged for
transferring the task of coreference resolution from one language to another.

We tackle the setting in which a large labeled corpus exists in a resource-
rich language (i.e., the ‘source’ language) whereas only a smaller corpus
exists in a smaller-resource language (called the ‘target’ language). Specifi-
cally, we consider two scenarios in which black-box MT tools can be inte-
grated into a cross-lingual end-to-end coreference resolution system. The
first scenario, Translate-train, uses an MT tool to translate the large source
corpus into the target language, after which a coreference model is trained
in the target language. In the second scenario, Translate-test, test examples
in the target language are first machine translated to the source language,
after which a pre-trained coreference model is used to predict the labels.
The second scenario has the disadvantage that an MT tool is required at
inference time.

Similar transfer learning setups for basic sequence tagging tasks gave
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encouraging results (as discussed in Section 5.4), but we find this is no
longer the case for the task of coreference resolution.

We analyze the different sources of error related to integrating the MT
tool in the pipeline. As it turns out, translation errors have the strongest
impact on the effectiveness of the proposed methods, followed by prediction
errors and alignment issues.

5.2 Approach

(a) Translate-train procedure (b) Translate-test procedure

Figure 5.1: Annotation projection approaches, with indication of the main sources
of error through the icon.

5.2.1 Translate-train

The goal of the Translate-train approach (visualized in Fig. 5.1a) is to create
a dataset in the target language, on which a model can be trained. We follow
the approach used by [9] for NER, but we now apply it for coreference
resolution.

We assume access to labeled training data in the source language, an
MT tool, an alignment tool, and a test set in the target language. First,
we use the MT tool to translate the entire training set from the source to
the target language. This results in an unannotated dataset in the target
language. Second, we identify and label all mentions of entities in the
translated target document by aligning the source and target documents
using the alignment tool. Finally, a competitive monolingual method is
used to train a coreference model directly in the target language, which is
then evaluated on the test data.
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5.2.2 Translate-test

The Translate-test approach (see Fig. 5.1b) follows [10], and assumes access
to a large training corpus in the source language, an off-the-shelf MT system,
an alignment tool, and a test set in the target language. First, the test set is
translated into the source language. A competitive model trained on the
source language training corpus is used to annotate the translated test set
(i.e., identify and cluster mentions into groups). With the alignment tool, the
translated documents in the source language are aligned with the original
ones in the target language, after which the predicted labels are projected
onto them for evaluation.

Table 5.1: SemEval-2010 Dataset Statistics

Training Development Test

#docs #sents #tokens #docs #sents #tokens #docs #sents #tokens

Catalan 829 8,709 253,513 142 1,445 42,072 167 1,698 49,260
Dutch 145 2,544 46,894 23 496 9,165 72 2,410 48,007
English 229 3,648 79,060 39 741 17,044 85 1,141 24,206
Italian 80 2,951 81,400 17 551 16,904 46 1,494 41,586
Spanish 875 9,022 284,179 140 1,419 44,460 168 1,705 51,040

Table 5.2: Monolingual and Cross-Lingual results in terms of Average Coreference
F1

Method Alignment tool Dutch Spanish Catalan Italian

Translate-train Fast-Align 0.280 0.410 0.410 0.340
Translate-train Heuristics 0.260 0.390 0.370 0.307
Translate-test Fast-Align 0.365 0.461 0.480 0.362
Translate-test Heuristics 0.358 0.438 0.453 0.347

End2end Coref - 0.380 0.516 0.533 0.430
Sucre or Tan-l* - 0.191 0.490 0.482* 0.607

5.3 Experimental Evaluation

Data — Our evaluation set was created for the SemEval-2010 [11] shared
task, and contains coreference annotations for six languages (see Table 5.1
for dataset statistics). We use Dutch, Spanish, Italian, and Catalan as our
target languages, and the corresponding SemEval-2010 datasets are used
to train and test the respective monolingual coreference models. As our
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large and high-quality source dataset, we use the English OntoNotes 5.0
coreference dataset from the CoNLL 2012 shared task [12].
Coreference Models — For the Translate-train scenario, we use the end-
to-end neural coreference resolution method from [4] to train and evaluate
on the target languages. This model considers all spans of text as potential
mentions and finds the most probable antecedents for each span. For each
span, a span ranking model is used to decide which of the previous spans are
good antecedents, whereby a trained pruner eliminates less likely mentions.
During training, the marginal log-likelihood of all correct antecedents in
the gold clusters is optimized. In our Translate-test experiments, we use
SpanBert [7], an English end-to-end coreference resolver, trained on the
OntoNotes corpus.
Translation Tool — In both scenarios, we use Google Translate1 as our
publicly available MT tool of choice.
Alignment — For the alignment step, we compare Fast-Align from [13], a
simple unsupervised statistical word alignment model, with the Heuristics
method from the work of [9].
Baselines — We compare our translate-train and translate-test approaches
with a model trained on annotated data in the target language (i.e., End2end
Coref). We also consider two alternative baseline systems for which end-to-
end coreference results were reported on the SemEval 2010 shared task data:
Sucre and Tan-l. The Sucre system [14] uses engineered features for words,
mentions and mention pairs and uses classical machine learning classifiers
to cluster mentions. It reports the best results for Spanish, Italian and Dutch.
The Tan-l system [15] uses dependency parse trees to detect mentions and
trains a binary classifier to decide the pairwise relationship between the
extracted mentions and reports the best result for Catalan. Works such
as [16] and [17] are not used as baselines because they make use of external
resources (mention detectors, NER, Alpino parse trees2, etc. ).
Metrics — For evaluation, we report the average F1 of the MUC, B3, and
CEAF4 coreference resolution metrics, as proposed in [18].

5.3.1 Results

Our end-to-end monolingual baseline outperforms the Sucre and Tan-l sys-
tems on Catalan, Spanish and Dutch, as shown in Table 5.2. For Italian, our
baseline shows inferior performance, possibly due to the small number of
training examples (i.e., only 80 documents). Interestingly, our cross-lingual
models remain unable to surpass the effectiveness of their monolingual

1The translation of documents using Google Translate was done on 02-12-2020.
2http://www.let.rug.nl/vannoord/alp/Alpino/

http://www.let.rug.nl/vannoord/alp/Alpino/
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counterparts, although the former leverage a much larger coreference cor-
pus than the latter. The Translate-test is consistently better than Translate-
train, which we hypothesize is due to the superior quality of the English
SpanBert model, especially in comparison with the End2end Coref mod-
els trained on the translated (i.e., noisy) source corpus. The Fast-Align
alignment strategy consistently outperforms the Heuristics based align-
ment method in both the Translate-train and Translate-test approaches. [9]
showed that the Heuristics improved on their Fast-align and indicated the
reason to be that named entities are low-frequency words. To improve
its performance, we trained Fast-Align on the additional parallel corpus
Europarl [19].

5.3.2 Error Analysis

In this section we discuss the contributing factors to the low performance
of the Translate-test setup (being the better of both scenarios). From 10
randomly sampled test documents, which contain a total of 424 mentions
and 127 mention clusters, we quantify three particular sources of error (see
Fig. 5.1b):

Table 5.3: Literal translation error (1 & 2) and pronoun mistranslation (3 & 4) exam-
ples

Source text Google Translate Correct translation

1. Het gesprek ging on-
der meer over [Punt].

The conversation was
about [Dot].

The conversation,
amongst others, was
about [Punt]

2. [Mark Grammens] . . . [Mark Grams man] . . . [Mark Grammens] . . .

3. . . . en [zijn] stelling is
bekend

. . . and [its] position is
well known

. . . [his] position is well
known

4. [Die] nam daar genoe-
gen mee.

[Which] was content
with that.

[He] was content with
that

Translation Error — To measure the impact of the imperfect translation step,
we annotate the Dutch-to-English translated documents with coreference
labels (i.e., perfect annotation on the noisy translations). We also manually
align the noisy English documents with the original Dutch documents (i.e.,
to simulate perfect alignment).
Automatic Labeling Error — To see the impact of the prediction model, we
use SpanBert to annotate the manually translated documents (i.e., assuming
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Table 5.4: Error breakdown for a random sample of 10 Dutch SemEval-2010 docu-
ments.

Model F1

Translate-test 0.415
only translation error 0.490
only labeling error 0.613
only alignment error 0.896

perfect translation), again followed by a manual alignment step (i.e., to
avoid alignment errors).
Alignment Error — To quantify the noise induced by the alignment step,
we manually translate the documents to English and manually assign the
coreference labels, after which Fast-Align is applied for alignment with the
original Dutch documents for evaluation.

Our analysis on the error breakdown is shown in Table 5.4. The largest
source of error for the translate-test model appears to be the MT step
followed by the labeling error, whereas the impact of the alignment error
is rather small. We looked into the translation errors, and observed that
the coreference results are most degraded due to incorrectly translated
pronouns, and literal translations of (parts of) named entities.

The labeling error leads to a hypothetical F1 (i.e., in the absence of other
errors) of 0.613 on the selected documents. This is considerably below the
reported SpanBert performance of 0.796 on the Ontonotes test set [7]. We
hypothesize this is partly due to the shift in domain between the English
Ontonotes data and the SemEval data in Dutch, as well as some differences
in coreference annotation guidelines between both datastets. For example,
coreference relations with verbs are annotated in Ontonotes but not in
SemEval.

5.4 Related Work

The key concept used in the presented transfer learning scenarios, is annota-
tion projection, as originally proposed by [20] for part-of-speech tagging. It
relies on the transfer of annotations from the source language to the target
language. Most annotation projection methods depend on parallel corpora
in which the source data is labeled using a trained model before projecting
the labels onto the data in the target language [21–28].

Alternatively, other works relied on the use of bilingual dictionaries
for annotation projection [29, 30]. The Translate-train idea of creating a
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noisy translated corpus with projected annotations has been proposed as
well [9, 31], for the task of dependency parsing and NER, respectively. [10]
used MT in the other direction (Translate-test) for the task of NER.

A common problem in both annotation projection scenarios is the align-
ment of text spans between languages, for which unsupervised statistical
alignment models can be used [10, 27], such as the IBM models 1-6 [32, 33].
A few recent works [29, 30] perform translation on a word or span level to
avoid the alignment problem. Others explored alignment heuristics such
as matching words based on their surface forms and translations [9, 24], or
using external information such as Wikipedia links [34, 35].

The prior works applied annotation projection to the tasks of NER, POS,
or dependency parsing, and proved relatively successful (i.e., close to mono-
lingual models in the target language). [22, 25] are notable prior works that
applied the idea of annotation projection to the task of coreference resolu-
tion. Unlike our work, they depend on the existence of parallel corpora and
are focused on a single language pair to test their ideas. Moreover, they
have a pipeline that extracts mentions using external annotation tools, or
even manually, before clustering them into coreference chains. We, how-
ever, perform both the mention identification and clustering in a span-based
end-to-end fashion.

For the task of end-to-end coreference resolution, we explore using
machine translation for annotation projection, especially with medium-
resource languages for which strong MT systems exist. We investigate if
MT systems can be used for transferring coreference knowledge (model,
dataset) without having to rely on parallel corpora.

5.5 Conclusion and Future work

While the idea of leveraging MT to improve NLP task performance for low
resource languages is not new, this idea to the best of our knowledge has
not been pursued for coreference resolution. We contribute by comparing
two conceptually different methods; the Translate-train and Translate-test
approaches. We further present a rigorous quantitative error analysis. From
our work, we conclude that (i) for coreference resolution the MT approaches
are not very successful. (ii) our error analysis suggests this is mainly due by
translation errors followed by labeling and alignment errors.

We believe MT models can still be leveraged in cross-lingual transfer
learning for coreference resolution, but we speculate that access to the in-
ternals of the models, such as attention weights, will be needed. Moreover,
future work will need to investigate hybrid strategies, combining transfer
learning from other languages with the available data in the target lan-
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guage, to override issues due to MT uncertainty or differences in annotation
guidelines.
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6
Conclusions and Future Research

This chapter outlines the main conclusions for each of the chapters described in this
thesis. Specifically, we describe the main contributions for every presented model
and we conclude by presenting future research directions that alleviate some of the
limitations of the proposed models.

⋆ ⋆ ⋆

6.1 Conclusions

6.1.1 Adapting Language Models to Distractor Ranking for
Educational Multiple-Choice Questions

In Chapter 2 of this thesis, we introduced and evaluated context-aware
distractor retrieval models. These models were developed by adapting mul-
tilingual pretrained language models to reuse distractor candidates that can
facilitate the educational task of MCQs creation. Particularly, we proposed
three models: (1) The D-SIM model that learns similar contextual represen-
tations for similar distractors, (2) The Q-SIM model that requires similar
questions to have similar representations, and (3) The DQ-SIM model that
linearly combines the previous two models benefiting from their respective
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strengths. Importantly, the DQ-SIM model showed a considerably reduced
nonsense distractor rate, which we consider a useful asset in terms of trust
in the model by teachers. We also asked teachers to evaluate the quality of
distractors using a four-level annotation scheme that we introduced. As a
result, teachers considered 3 out of 10 suggested distractors as high-quality,
to be readily used. Additionally, they found two more distractors to be
within topic, albeit of lower quality, and useful as inspiration for teachers
to come up with their own good distractors. Finally, we released a test
consisting of 298 educational MCQs with annotated distractors covering
six subjects and a 77K distractor vocabulary to promote further research.

6.1.2 Leveraging Large Language Models for Distractor Gen-
eration

In Chapter 3, we proposed a novel strategy to guide an instruction-tuned
large language model for the task of distractor generation in educational
multiple-choice questions. We direct LLMs to generate plausible and effec-
tive distractors by prompting them with well-chosen in-context example
question items. These items are automatically retrieved by the Q-SIM ranker
introduced in Chapter 2. We combine the original question with these cho-
sen items to give the LLM a prompt for creating distractors. We show a
significant improvement over LLMs that use random in-context examples
and the methods in Chapter 2. Teachers rated 5 out of 10 of our distractors
as high-quality on average, better than the 3 out of 10 for earlier methods.
Also, the production of nonsensical distractors dropped to 16%, a significant
decrease from those produced by the ranking models in Chapter 2.

6.1.3 Adapting Language Models to Gap-filling Exercise
Generation for Language Learning

In Chapter 4, our focus shifted to tailoring a pre-trained language Model
(PLM) for a specific educational task: generating gap-fill exercises in French.
This task was more specialized compared to the generic task of distractor
generation across various domains, subjects, and languages that we ex-
plored in Chapters 2 and 3. We introduced a real-world dataset called GF2,
which consists of French gap-filling exercises and a related prediction task.
This task involves identifying potential gaps in a given text, without prior
knowledge of the specific type of exercise, relying solely on an example
exercise. We proposed an example-aware neural network model specifically
designed for this task, and compared it with a baseline model that does
not take into account any example of the desired exercise type. We found
that our example-aware model outperforms the baseline model not only in
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predicting gaps, but also in distinguishing between different elementary
exercise types, even though it was not explicitly trained for this secondary
task.

6.1.4 Adapting Coreference Resolution to new target lan-
guages

In Chapter 5, we extended the adaptability theme of the thesis and focused
on adapting a fundamental task of coreference resolution to new languages.
Our approach involved leveraging black-box translation tools for boot-
strapping coreference resolution in languages with limited resources. We
compared and analysed two conceptually different strategies; (i) Translate-
train - translate the training data in high-resource language to the target
language and train a coreference model and (ii) Translate-test - translate
the test data into high-resource source language (e.g., English) and use a
trained coreference model for inference. Moreover, we studied the source
of errors for these two strategies and found that the quality of machine
translation tools is the main limiting factor.

6.2 Future Directions

Although the methods and techniques we proposed have shown consider-
able performance improvements in their respective tasks, there are several
promising research directions that emerge from our contributions. In the
following paragraphs, we will outline some potential future directions for
enhancing the models and methods discussed in this thesis.

Distractor generation: In Chapters 2 and 3, we presented our proposed
models and techniques to generate textual distractors for educational MCQs.
Yet, other avenues seem promising. One future research direction is expand-
ing the current work into a multimodal system. This system would consider
additional sources of information, such as images and speech data accom-
panying MCQs in digital learning tools. This approach could provide a
more engaging and interactive way for students to interact with educational
content, enhancing their understanding and retention of concepts. More-
over, exploring the educational impact of multimodal distractor generation
can inform the design of future educational MCQs and assessments. For
example, the effectiveness of image-text questions in various subject areas,
like science and history could be evaluated to identify the best practices for
multimodal MCQ generation.

Additionally, there is potential to explore alternative prompting strate-
gies for large language models (LLMs) in distractor generation. One such
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strategy is the use of a self-correcting mechanism [1], which involves re-
vising the initial output of an LLM by evaluating specific aspects of the
text. This approach could offer new insights in the context of distractor
generation.

Another practical research direction is to investigate the design of a more
detailed evaluation framework for distractor quality. This framework would
consider various factors, including the student’s level and the difficulty
of questions. For instance, to incorporate the student’s level, one might
look at their performance history or academic standing. Similarly, the
difficulty of a question can be estimated based on the percentage of times
students answer it correctly versus incorrectly. Another area to explore is
ensuring that a single MCQ’s complete set of distractors are sufficiently
diverse. In our present study, we focused on retrieving (or generating ) a
list of plausible distractors independently of each other. However, ideally,
distractors in MCQs should be not only plausible but also diverse. The
evaluation frameworks should also be made to account for the diversity of
distractors.

Gap-filling exercise generation: First, while our proposed method in Chap-
ter 4 is language-agnostic in principle, our evaluation is limited to our
French benchmark dataset. Expanding our approach to encompass other
languages would bring new and interesting challenges for further investi-
gation. Second, despite topic diversity within our exercise documents (e.g.,
some examples consist of independent sentences, while others are coherent
texts centered around the same topic.), it would be interesting to quantify
the degree of topical bias introduced during our training process and its
impact on our binary task evaluation. Another natural modeling extension
is to adapt Sequence to sequence (SEQ2SEQ) models for our task, particu-
larly text-to-text models such as T5 [2]. As for the distractor generation task,
there is a potential to explore different prompting strategies for large lan-
guage models (LLMs), when generating gap-filling grammar exercises. For
instance, using chain-of-thought prompting [3], which involves generating
intermediate steps before producing the final response, could be explored
for generating grammar exercises. Additionally, an interesting future study
would involve investigating the number of example demonstrations that
LLMs require in order to accurately mimic example gap exercises.

Coreference resolution: In Chapter 5, our Translate-test involves using
a coreference model trained on original (human-generated) data. How-
ever, the input fed into the model during testing is produced by a machine
translation tool. Recent studies [4] have shown that original and machine-
translated data possess different properties, and this mismatch can harm
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performance. An intriguing research direction is to adapt machine trans-
lation (MT) tools to mitigate this mismatch in the context of coreference
resolution. Although recent research [5] has proposed addressing the dis-
tribution shift between machine-translated and human-generated text, this
has so far only been explored for classification tasks. Investigating similar
adaptations for coreference resolution could be a valuable extension of this
work.
Ethical and practical considerations: PLMs bring substantial advantages
but also present significant ethical and practical challenges. This thesis
has not directly addressed key concerns like data privacy, biases inherent
in the training datasets for PLMs, and the widening digital divide. It is
crucial to complement the deployment of these technologies with rigorous
critical evaluation and human supervision to ensure their positive impact
within educational settings. Furthermore, this work does not explore energy
usage or evaluate the carbon footprint associated with employing PLMs in
educational contexts. Future research involving PLMs should aim to assess
and report on aspects like fairness, the digital footprint, and environmental
impact, specifically carbon emissions.
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A
Predicting Suicide Risk from Online

Postings in Reddit: The
UGent-IDLab submission to the

CLPysch 2019 Shared Task A

In this chapter we describe our contribution to CLPsych 2019 shared task where we
achieve competitive results using linear models and ensemble models to predict the
degree of suicide risk of people based on their posts on Reddit.

⋆ ⋆ ⋆

S.K. Bitew, G. Bekoulis, J. Deleu, L. Sterckx, K. Zaporojets,
T. Demeester and C. Develder

In Proceedings of CLPsych, 2019.

Abstract This paper describes IDLab’s text classification systems submitted
to Task A as part of the CLPsych 2019 shared task. The aim of this shared
task was to develop automated systems that predict the degree of suicide
risk of people based on their posts on Reddit.1 Bag-of-words features,

1www.reddit.com

https://www.reddit.com/
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emotion features and post-level predictions are used to derive user-level
predictions. Linear models and ensembles of these models are used to
predict final scores. We find that predicting fine-grained risk levels is much
more difficult than flagging potentially at-risk users. Furthermore, we do
not find clear added value from building richer ensembles compared to
simple baselines, given the available training data and the nature of the
prediction task.

A.1 Introduction

The goal of the CLPysch 2019 shared task is to predict the degree of suicide
risk based on online postings of users. This shared task is motivated by the
long-term lack of progress in predicting suicide risk. [1], after reviewing
more than 70 studies, argues that suicidality cannot be predicted effectively
using traditional standard procedures, e.g., questions of clinicians about
suicidal thoughts: the authors claim that a large fraction of patients (i.e.,
80%) who committed suicide, did not admit contemplating suicide when
asked by a general practitioner. Another study by [2] also concludes that
prediction of suicide risks has not improved over the last 50 years and
suggests that machine learning learning methods can contribute towards
solving that challenge.

Typically, there are long periods of time between clinical encounters of
patients. During these periods, some patients are engaged in frequent use
of social media. [3] states that such usage of social media can be exploited
to build binary risk classifiers. However, when such systems are deployed,
the number of people flagged as “at risk" will exceed clinical capacity
for intervention. This in turn motivates the design of more fine-grained
prediction models, predicting various risk levels, as proposed for the current
shared task.

Our system uses a combination of (i) bag-of-word features, (ii) emotion
labels, and (iii) information derived from post-level risk features (see Sec-
tion A.3.1 for more details). Using these features, we apply linear models
to predict the scores. We explore different combinations to evaluate the
performance of the different models.

The remainder of the paper is organized as follows: Section A.2 de-
scribes the data and the shared task. Section A.3 presents the details of
the implemented system and the features. Section A.4 shows the experi-
mental results obtained from the test data. To compare our results to other
participants in the shared task, we refer the reader to [4]. To conclude, we
summarize our findings and present future directions in Section A.5.
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A.2 Data and Task A

The dataset used in the shared task is sampled from the University of Mary-
land Reddit Suicidality Dataset [5]. It is constructed using data from Reddit,
an online site for anonymous discussion on a wide variety of topics. Specifi-
cally, the UMD dataset was extracted from the 2015 Full Reddit Submission
Corpus2,using postings in the r/SuicideWatch subreddit (henceforth simply
SuicideWatch or SW) to identify anonymous users who might represent
positive instances of suicidality and including a comparable number of
non-SuicideWatch controls. The dataset is annotated at user level, using a
four-point scale indicating the likelihood of a user to commit suicide: (a)
no risk, (b) low risk, (c) moderate risk, and (d) severe risk. The corpus
includes posts from 21,518 users and is subdivided into 993 labelled users
and 20,525 unlabelled users. Out of the 993 labeled users, 496 have at least
posted once on the SuicideWatch subreddit. The remaining 497 users are
control users (i.e., they have not posted in SuicideWatch or any mental
health related subreddits). The data is provided in a comma-separated val-
ues file that includes the post titles, content, timestamps, and anonymized
unique user ids. The goal of shared Task A is to predict users’ suicide risk
into one of the four classes (i.e., (a)-(d)) given the fact that he/she has posted
on SuicideWatch.

A.3 Systems Description

This section provides an overview of features extracted from posts, followed
by a short system description of our submitted runs.

A.3.1 Features

TF-IDF features: We used the TF-IDF weighting scheme as text representa-
tion. The TF-IDF feature vectors of n-grams were generated for our dataset.
We experimented with n-grams for n ranging from 1 to 5. In our preliminary
investigations, we explored various kinds of features, such as character level
n-grams, or textual statistical features (such as the total number of posts),
but these did not lead to increased performance metrics.
Emotion features: We hypothesize that individuals contemplating suicide
will tend to express emotions with negative sentiment, more than indi-
viduals without suicidal thoughts. Therefore, we use a pre-trained model

2https://www.reddit.com/r/datasets/comments/3mg812/full_reddit_
submission_corpus_now_available_2006/

https://www.reddit.com/r/datasets/comments/3mg812/full_reddit_submission_corpus_now_available_2006/
https://www.reddit.com/r/datasets/comments/3mg812/full_reddit_submission_corpus_now_available_2006/
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Figure A.1: Main elements of the presented system setup.

called DeepMoji3 that predicts emotions from text [6]. For an individual
post of a user, a 64-dimensional emotion feature vector is generated by the
model, with each dimension corresponding to the probability for one out
of 64 different emojis. We take the element-wise maximum, average and
standard deviation of this vector as features to represent a user’s emotions.

Suicide risk features: We reason that post-level binary risk estimates can
help in making the user-level risk level prediction. To achieve this, we
semi-manually annotated 605 posts from the unlabelled dataset as follows.
First, we trained a TF-IDF based logistic regression classifier to predict the
four class labels (a)–(d), using labelled data for 496 users. We adopt that
classifier to assign four probabilities, one for each class (a)–(d), to each post
in the unlabelled dataset. We take a random sub-sample of the automati-
cally labelled posts, order it in terms of no-risk probability, and manually
label posts taken in turn from the top and bottom of the ordered list. We
thus obtain a balanced set of 605 annotated posts (302 ‘risk’, 303 ‘no-risk’),
spending a total annotation time of 5 hours. Subsequently, a TF-IDF based
logistic regression binary classifier was trained on these manually annotated
posts. Finally, the post-level binary predictions were then aggregated into
user-level suicide risk features by taking the maximum, mean, and standard
deviation of the predicted post-level scores. The motivation behind this
annotation experiment was to investigate the effectiveness of a cheap addi-
tional annotation effort in boosting the final model’s prediction accuracy.
By ‘cheap’ annotation effort, we refer to annotations on the post-level as
opposed to user-level, binary as opposed to 4-label, and directly balanced as
opposed to a larger random sample to obtain the same amount of at-risk
posts.

3https://github.com/bfelbo/DeepMoji

https://github.com/bfelbo/DeepMoji
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A.3.2 Models

Three different systems were explored for our submission to the shared task.
A logistic regression classifier and two ensemble-based classifiers.

1. Baseline classifier: a LR classifier [7] is trained based on TF-IDF
weighted bag-of-word features.

2. Ensemble without Risk classifier: this ensemble combines the scores
from the baseline logistic regression classifier, a linear Support Vector
Machine (SVM) classifier and the emotion classifier. The linear SVM,
included in scikit-learn [7] is trained on the TF-IDF representations.
This ensemble uses an additional logistic regression classifier (at the
next level) to predict the final classes.

3. Ensemble (all): this model combines the scores from all classifiers
as illustrated in Fig. A.1. This ensemble uses a second level Logistic
Regression classifier similar to the previous ensemble.

With this system choice, we are able to measure the impact of combining
linear classifiers with emotion features compared to a simple linear model
(second vs. first run), and to measure the added value from the additional
post-level annotations (third vs. second run).

A.4 Experimental Results

In this section, we present the final test results of the three submitted sys-
tems on the official test set. The test set consists of a total of 189 posts
from 125 different users. The official evaluation metric used in the shared
task is the macro F1 score on all four classes. Table A.1 depicts the official
models’ performance on the test data. Our baseline classifier outperforms
the ensemble models. This can be explained by (i) bias in the training/test
split during development, (ii) the small number of annotated training in-
stances, or (iii) the partly subjective nature of the task, and in particular the
distinction between fine-grained levels such as ‘low risk’ and ‘moderate
risk’. Note that, however, our most advanced model did perform best for
the simpler task of detecting potentially at-risk (‘flagged’) users. Further
research is required to investigate these potential issues.

In addition, two more metrics were used. The first metric is the F1
score for flagged versus non-flagged users. The flagged vs. non-flagged F1 is
relevant for a use case in which the goal is to distinguish users that can be
safely ignored (category (a), no risk) from those that require attention (i.e.,
categories (b), (c), (d)), such as when human moderators need to investigate
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Table A.1: Official results

Models Precision Recall F1

Baseline 0.444 0.457 0.445
Ensemble w/o Risk 0.428 0.402 0.407
Ensemble (all) 0.445 0.419 0.426

the risk further. Table A.2 shows the performance of the models in binary
classification of flagged and non-flagged users, whereby the ensemble with
sentiment features (‘Ensemble w/o Risk) outperforms the linear baseline,
but the overall ensemble with binary post-level risk predictions performs
slightly better still. Given the much higher scores, the task of flagging
potentially at-risk users appears much simpler than making fine-grained
risk-level predictions.

Table A.2: Flagged vs Non-flagged

Models Precision Recall F1

Baseline 0.904 0.806 0.852
Ensemble w/o Risk 0.848 0.903 0.875
Ensemble (all) 0.850 0.914 0.881

The second metric is the urgent versus non-urgent F1 score that measures
distinction between users who are at a severe risk of suicide (category (c)
and (d)) and other users. Table A.3 shows the models’ performance for
classifying users into urgent and non-urgent classes. The overall higher
scores in Table A.3 indicate that the binary classification of urgent from non
urgent users is fairly simpler task when compared to the fine-grained risk
level classification.

Table A.3: Urgent vs Non-urgent

Models Precision Recall F1

Baseline 0.833 0.750 0.789
Ensemble w/o Risk 0.795 0.725 0.758
Ensemble (all) 0.792 0.762 0.777

A.5 Conclusion and Future work

In this paper, we described the Ghent University-IDLab submission to the
CLPysch 2019 shared Task A. We found that the baseline classifier based on
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logistic regression outperformed the ensemble of classifiers. Specifically, our
baseline model obtained a macro F1-score of 0.445 on the shared task. Our
system also achieves a macro F1-score of 0.881 and 0.789 on flagging non-
risk users and distinguishing urgent from non-urgent users, respectively.
The more advanced models (i.e., ensembles) did not bring any added value
in the fine-grained user level risk prediction. This can be due to the limited
number of training examples in the provided dataset, bias in train/test
splits during development and the subjective nature of the task.

As next steps, we plan on investigating alternative ways of splitting
train from test data such as stratified cross-validation (i.e., to avoid different
distributions of the target variable in the train/test splits). We also want to
explore more sophisticated ways of ensembling and stacking techniques
while also taking into account the time stamp meta-data of posts.
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